
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2022) 15:90
https://doi.org/10.1007/s44196-022-00156-8

RESEARCH ARTICLE

An Improved Sea Lion Optimization for Workload Elasticity Prediction
with Neural Networks

Binh Minh Nguyen1 · Trung Tran1 · Thieu Nguyen1 · Giang Nguyen2,3

Received: 23 February 2022 / Accepted: 17 October 2022
© The Author(s) 2022

Abstract
The work in this paper presents a study into nature-inspired optimization applied to workload elasticity prediction using
neural networks. Currently, the trend is for proactive decision support in increasing or decreasing the available resource in
cloud computing. The aim is to avoid overprovision leading to resource waste and to avoid resource under-provisioning. The
combination of optimization and neural networks has potential for the performance, accuracy, and stability of the prediction
solution. In this context, we initially proposed an improved variant of sea lion optimization (ISLO) to boost the efficiency
of the original in solving optimization problems. The designed optimization results are validated against eight well-known
metaheuristic algorithms on 20 benchmark functions of CEC’2014 and CEC’2015. After that, improved sea lion optimization
(ISLO) is used to train a hybrid neural network. Finally, the trained neural model is used for resource auto-scaling based on
workload prediction with 4 real and public datasets. The experiments show that our neural network model provides improved
results in comparison with other models, especially in comparison with neural networks trained using the original sea lion
optimization. The proposed ISLO proved efficiency and improvement in solving problems ranging from global optimization
with swarm intelligence to the prediction of workload elasticity.

Keywords Nature-inspired computing · Improved sea lion optimization · Memorizing historical movement · Levy flight
trajectory · Opposition-based learning · Extreme learning machine · Neural network · Workload prediction

Abbreviations
ABC Artificial bee colony
ADF Augmented Dickey-Fuller
ARIMA Autoregressive integratedmoving average
ARMA Autoregressive moving average
CFNN Cascade forward neural network

CHIO Coronavirus herd immunity optimization
COA Coyote optimization algorithm
CPU Central processing unit
DE Differential evolution
ELM Extreme learning machine
FLNN Functional-linked neural network
GA Genetic algorithm
HGS Hunger game search
HI −WOA Hybrid improved WOA
IaaS Infrastructure-as-a-Service
ISLO Improved sea lion optimization
KGE Kling–Gupta efficiency
KLD Kullback–Leibler divergence
LCBO Life choice-based optimization
LFT Levy fight trajector
MA Moving average
MAE Mean absolute error
MAPE Mean absolute percentage error
MHM Memorizing historical movement
M − LCO Modified version of LCBO
MLP Multi-layer perceptron
MSE Mean squared error

 * Binh Minh Nguyen
 minhnb@soict.hust.edu.vn

 Trung Tran
 trungtq1997@gmail.com

 Thieu Nguyen
 nguyenthieu2102@gmail.com

 Giang Nguyen
 giang.nguyen@stuba.sk

1 School of Information and Communication Technology,
Hanoi University of Science and Technology, Hanoi,
Vietnam

2 Institute of Informatics, Slovak Academy of Sciences,
84507 Bratislava, Slovakia

3 Faculty of Informatics and Information Technologies, Slovak
University of Technology, 84216 Bratislava, Slovakia

http://orcid.org/0000-0003-1328-3647
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-022-00156-8&domain=pdf

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 2 of 26

NN Neural network
OBL Opposition-based learning
OTWO Enhanced tug of war optimization
PSO Particle swarm optimization
QSO Qeuing search optimization
RAM Random access memory
RMSE Root mean squared error
SAP − DE Surrogate assisted parameter adapted DE
SLO Sea lion optimization
STL Seasonal-trend decomposition using locally

estimated scatterplot smoothing
WOA Whale optimization algorithm

1 Introduction

Cloud computing is already a mainstream model for
resource-intensive applications. Most Infrastructure-as-a-
Service (IaaS) offer at least one resource monitoring solution
for customers, who can rely on collected data and thresh-
olds to decide the amount of resources and scaling moments
themselves. However, wasting and lacking resources prob-
lems occur because it is difficult to determine exactly the
scaling moments using the threshold approach. To improve
the quality of resource provision service, proactive workload
prediction is investigated for effective resource management
in advance [1].

Neural network have been developed and widely applied
to classification, pattern recognition, and forecasting solu-
tions. These networks are not intended to be realistic models
of the brain, but rather robust algorithms and data struc-
tures capable of modeling difficult problems. Neural net-
works have units (neurons) organized in layers. They can
be divided into shallow (one hidden layer) and deep (more
hidden layers) networks. Through proper training, the net-
work can learn how to optimally represent inputs to output
variables, and therefore, learn how to make predictions.

With the current boom of bio- and nature-inspired meth-
ods, they are furthermore improved in various ways, such
as stochastic components, hybridization, and evolution. The
aim is to avoid local optima in the global optimization search
process in a better way to archive faster computation time,
training with less data while maintaining acceptable high
accuracy without significantly increasing model complex-
ity [2].

In this context, our contributions presented in this study
are as follows.

• To study various effects such as memorizing histori-
cal movement (MHM), Levy flight trajector (LFT),
and opposition-based learning (OBL) on performance
improvement of metaheuristic optimization.

• To improve the original sea lion optimization (SLO) [3]
by the combination of MHM and LFT in the explora-
tion phase and OBL in the exploitation phase. The novel
improved optimizer is called ISLO.

• To carefully evaluate the proposed optimizer with the
CEC 2014 [4] and CEC 2015 functions [5] and to dem-
onstrate its effectiveness.

• To use ISLO to train neural networks models to predict
system workloads with real public datasets. The results
showed that the model offers improvements in the con-
vergence, stability, and prediction accuracy performance
compared to other optimizers while integrating with neu-
ral networks for modeling.

The remainder of the paper is organized as follows. Section 2
provides an overview and the current situation with nature-
inspired optimization, neural network modeling, including
the training process and data processing, and preparation
for time series modeling. Section 2.4 provides a detailed
look at the design and implementation of the original sea
lion optimization algorithm (SLO). Section 2.5 describes the
work steps of the proposed solution. Section 3 describes our
proposed improved variant of sea lion optimization ISLO in
Sect. 3.1 and our hybrid neural network model, specifically
the extreme learning machine (ELM) in Sect. 3.2 trained
by ISLO (Sect. 3.3). Experiments including their setting,
evaluation metrics, benchmark functions, and datasets are
described in detail in Sect. 4. Experiment results and dis-
cussion of the results are presented in Sect. 5 with com-
parison with other neural network models trained by other
approaches. Finally, the conclusions and future work are
given in Sect. 6.

2 Related Work

2.1 Workload Elasticity Prediction

Prediction of workload elasticity is one of the application
problems in cloud computing. It comes from the record-
ing of data logs in cloud data centers [6] to provide better
decision support for resource elasticity. Similar time-ordered
data are available in other business sectors, such as weather
prediction, financial stocks, or healthcare monitoring. Work-
load elasticity is also called resource auto-scaling, which
is a big issue to be tackled to give cloud servers a flexible
ability like being adaptive and scalable with automatically
recovering and effective resource allocation.

There are many approaches to dealing with time-series
data. The most mentioned methods come from statistics [7]
such as autoregressive integrated-moving average (ARIMA),
autoregressive moving average (ARMA), moving average
(MA) and its variance like general autoregressive conditional

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 3 of 26 90

heteroscedastic [8]. The next direction goes through machine
learning and deep learning as reported in [9, 10] for larger
datasets. Deep learning models are favorite with competitive
performance. However, they require a larger amount of data
to train and computational power.

2.2 Neural Networks and Learning Ability

In the last three-decade, neural networks have been widely
applied to real-world applications such as classification, pat-
tern recognition regression, and forecasting problems [11,
12]. The most well-known and often-used model in this cat-
egory is multi-layer perceptron (MLP) and its subcategories.
These neural networks provide learning ability with simple
structures. There are several ways to increase neural network
performance:

1. Using more complex structured layers such as deep
learning,

2. Replacing gradient descent training algorithm with
nature-inspired algorithms,

3. Replacing hidden layers with different techniques to
form different and more effective variants.

In the first way, deep learning requires more data for model
training, which comes with requirements on computational
power with the promise in predictive quality [13]. The sec-
ond way tries to improve neural network performance is to
use other methods to train neural networks instead of tradi-
tional gradient descent ones [14–16].

In the third way, here are attempts to increase neural
network performance by modifying their structure without
increasing the complexity (shallow learning). Functional-
linked neural network is one such variant [17]. Instead of
using the hidden layer to learn a non-linear relationship
between input and output, they use a set of expansion func-
tions to learn a non-linear relationship [18]. However, func-
tional-linked neural network are domain-specific dependent,
i.e., the correct expansion function has to be set based on
concrete datasets to archive the best results.

Other types of MLP are feed-forward neural network, cas-
cade forward neural network (CFNN) [19], ELM [20]. The
difference between ELM and MLP is the calculation of the
weights of the network. In ELM, the weights between input
and hidden layer are randomly chosen. The weights between
the hidden and output layer are calculated based on the gen-
eralized inverse operation of the hidden layer output matrix.
ELM not only learns much faster with better generalization
performance than traditional gradient-based learning algo-
rithms but also avoids many difficulties faced by gradient-
based learning methods such as stopping criteria, learning
rate, learning epochs, and local minima. However, the prob-
lem of ELM is the requirement of more hidden neurons than

traditional gradient-based learning algorithms and leads to
the ill-condition problem due to randomly selecting input
weights and hidden biases. In [21], the authors proposed
an evolutionary ELM using the differential evolution (DE)
algorithm to select input weights and using Moore–Penrose
generalized inverse to analytically determine output weights.
These improvements can bring good performance and make
a compact ELM network.

In this work, the motivation is to propose a new low-cost
hybrid model using nature-inspired computation to train
neural network models for the prediction of workload elas-
ticity with data logs from the underlying monitoring system.

2.3 Nature‑Inspired Computing

Recently, an impressive variety of nature-inspired algo-
rithms (metaheuristic) has been investigated and reported
[22, 23]. The optimization problems that attracted the atten-
tion of these approaches have a large variance, ranging from
single-objective to multi-objective, continuous to discrete,
constrained to unconstrained. Solving these problems is not
a straightforward task due to their complex behavior [24,
25]. Nature-inspired algorithms provide a solution to many
application problems [26, 27]. They are designed to achieve
approximately optimal solutions in an acceptable time range
for NP-hard (NP-hardness or non-deterministic polynomial-
time hardness) problems [28].

Most of the classical metaheuristic algorithms have been
developed a long time ago, like genetic algorithm (GA) [29,
30], particle swarm optimization (PSO) [31]. Despite their
achievements, novel and improved evolutionary approaches
have emerged successfully with a great number of new
metaheuristics inspired by evolutionary or behavioral pro-
cesses. These new-generation algorithms are often called
nature-inspired algorithms. The entire group of these algo-
rithms can be classified into four categories [32, 33].

• Evolutionary algorithms with the GA mentioned above,
which mathematically mimics Darwinian evolution laws
[34]. Differential evolution also belongs to this group
with its adaptive variants. The search process starts with
randomly generated solutions that evolve continuously
throughout generations [35].

• Swarm-based algorithms or swarm intelligence refer to
the collective behaviors of wild animals, e.g., birds, cats,
and bacteria and mimic their social interactions [36]. The
optimization process in these algorithms is mainly char-
acterized by the ability to explore based on the diversity
of platforms and develop exploitation based on searching
for the best solution [37]. The typical examples are par-
ticle swarm optimization, whale optimization algorithm
(WOA) [38], coyote optimization algorithm (COA) [39]

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 4 of 26

artificial bee colony (ABC) [40], and hunger game search
(HGS) [41].

• Physics-inspired algorithms mainly simulate physical
phenomena that occur in nature by mathematical for-
mulas, e.g., quantum-based sine cosine algorithm [42]
or imitating physical principles in the universe such as
galactic swarm optimization [43], multi-verse optimiza-
tion [44], parallel hurricane optimization algorithm [45],
movable damped wave algorithm [46], improved atom
search optimization [47].

• Human-inspired algorithms are unique because they
draw inspiration from several phenomena commonly
associated with human behavior, lifestyle, or percep-
tion. Recent examples are coronavirus herd immunity
optimization (CHIO) [48] qeuing search optimization
(QSO) [33].

Among these types of nature-inspired algorithms, swarm
intelligence is the most popular because it is easy to under-
stand and implement. There are a number of techniques to
improve their performance such as levy-flight trajectory

[49], memory-based method [50], crossover operations [51],
opposition-based learning [16] and hybridization [2].

In machine learning, nature-inspired algorithms are often
used for feature selection and hyper-parameter tuning. In this
work, the use of such algorithms is investigated to optimize
neural networks [52], that is, using ISLO to train neural net-
works for workload prediction based on time-series data.

2.4 Sea Lion Optimization (SLO)

SLO was introduced to solve global-scale optimization. It
mimics the hunting behaviors of sea lions consisting of the
way they encircle and capture prey or how they use their
tail and whiskers. SLO can provide very competitive results
compared with other well-known particle swarm optimiza-
tion algorithms when working on different benchmark func-
tions. More details about SLO are provided in the original
work [3].

In this Section, the most important operations of SLO
are summarized and the SLO pseudo-code is presented in
Algorithm 1.

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 5 of 26 90

1. Detecting and tracking phase
 At first, SLO constructs N (the size of the population)

D-dimensional solutions (Eq. 1) by using uniform ran-
dom distribution in the search space as follows. Then,
in the swarm of sea lions, they identify the location of
the prey and gather other members who will join the
subgroup to organize the net following the encircling
mechanism. The prey is considered the best current solu-
tion or the solution closest to the optimal solution. These
behaviors are presented in Eq. 2.

 where:

i = 1, 2,⋯ ,N

j = 1, 2,⋯ ,D

Xinit
i,j

 is the initial position vector of ith solution;
Xmin
i,j

 denote the minimum value for the jth dimension
of ith solution;
Xmax
i,j

 denote the maximum values for the jth dimension
of ith solution;
rand is a uniform random value in the interval [0, 1].

 Solutions are evaluated for their fitness using the
objective function.

 where:

X
g

best
 is the position vector of the best solution;

Xg is the sea lion in iteration g;
g is the current iteration of generations;
gmax is the maximum number of generations;
r is a random value in the range [0, 1];
that is multiplied by 2 to increase the search operation
range;
Xg+1 is the new position of the search agent after
updating;
C is a variable with linearly decreased values from
2 to 0 throughout the iteration, indicating the encir-
cling mechanism of the sea lion group when they move
towards the prey and surround them.

(1)Xinit
i,j

= Xmin
i,j

+ randi,j (X
max
i,j

− Xmin
i,j

)

(2)Xg+1 =Xbest − C ∣ 2 r Xbest − Xg ∣

(3)C = 2

(
1 −

g

gmax

)

2. Vocalization phase When a sea lion recognizes a group
of its prey (such as fish), it will call other sea lions in
its group to gather and create a net to capture the prey.
That sea lion is considered as leader and it will lead the
group of sea lions toward and decide the behaviors of
the group. These behaviors are mathematically modeled
as shown in Eq. 4, Eq. 5 Eq. 6.

 where:

SPleader is the value that illustrates the decision of
leader followed by other sea lions in the group;
� is the angle of voice reflection in the water;
� is the angle of voice refraction in the water;

 In our work, � = 2�r and � = 2�(1 − r) where r is a
random number in the range [0, 1].

3. Attacking phase (Exploitation phase) The hunting
activities of sea lions led by leader are described in two
phases as follows:

• Dwindling encircling technique: This behavior
depends on the value of C in Eq. 2. C is linearly
decreased from 2 to 0 throughout the iteration, so
this allows the search space around the current best
position to shrink and force other search agents to
update in this search space as well. Therefore, a
newly updated position of a sea lion can be located
anywhere in the search space between its current
position and the location of the best agent. present.

• Circling updating position: Sea lions chase the bait
ball of fishes and hunt them starting from the edges
by Eq. 7, with m a random number in the range
[−1, 1] .

4. Searching for prey (Exploration phase) In the explo-
ration phase, the search agents update their positions
based on a randomly selected sea lion. The condition
that allows the exploitation phase to take place is when
the value of C becomes greater than 1, and the process
of finding a new agent is presented by Eq. 8.

(4)SPleader = ∣ (V1(1 + V2)∕V2 ∣

(5)V1 = sin(�)

(6)V2 = sin(�)

(7)Xg+1 = Xbest + cos(2�m) ∣ Xbest − Xg ∣

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 6 of 26

 where Xt
rand

 is a random sea lion randomly selected from
the current population. r is a random value in the range
[0, 1].

The results of the work [3] show that SLO faces obvious
problems with nature-inspired algorithms, such as being
trapped in local optima and slow convergence. In this work,
both exploitation and exploration phase for ISLO (Section 3)
is improved compared to the original SLO.

2.5 The Work Steps of the Proposed Solution

Based on the context presented above, the remainder of this
work proceeds through the following steps.

1. To propose an improved variant of SLO called Improved
Sea Lion Optimization (ISLO) by embracing the idea of
MHM of sea lions into account to upgrade the explora-
tion ability in combination with LFT and the idea of
OBL to enhance SLO exploitation capacity.

2. To test the convergence ability of ISLO by benchmark
functions of 4 function types: unimodal, multimodal,
hybrid, and composition functions. After that, ISLO
performance is compared with the original SLO and six
well-known optimization algorithms:

• Genetic algorithm and an improved version of the
DE algorithm - surrogate assisted parameter adapted
DE (SAP-DE) [53] in the evolutionary-based group;

• COA algorithm, HGS algorithm and a modified ver-
sion of WOA - hybrid improved WOA (HI-WOA)
[54] in the swarm-based group;

• CHIO and a modified version of life choice-based
optimization (LCBO) called modified version of
LCBO (M-LCO) [55] in the human-based group.

 The results show that ISLO provides superior final
fitness values and decent convergence speed compared
to the others.

3. To propose a hybrid model called ISLO-ELM, in which
ISLO is used for training ELM. The aim is to model
workload elasticity prediction based time-series data
logs for auto-scaling demand in cloud data centers with-
out significantly increasing complexity.

4. ISLO-ELM performance is validated on 4 real and pub-
lic datasets of resource workload of server clusters and
Internet traffic. The results are compared with MLP,
CFNN, FLNN and ELM in terms of forecast quality.
The optimization capacity of ISLO is also tested against

(8)Xg+1 = X
g

rand
− C ∣ 2 r X

g

rand
− Xg ∣ enhanced enhanced tug of war optimization (OTWO)

[56] and SLO to optimize ELM (OTWO-ELM and SLO-
ELM). The outcome shows that the model is very com-
petitive and has better potential results compared to the
others.

3 ISLO and Workload Elasticity Prediction

3.1 Improved Sea Lion Optimization (ISLO)

Exploration phase improvement
In the SLO exploration phase, newborn agents cause poor
exploration search ability due to the inheriting features of
existing solutions (randomly chosen agent Xg

rand
 but still in

the current population). To tackle this problem, a newly cre-
ated solution needs to satisfy two requirements: 1) carrying
random features to ensure a strong capability of the explora-
tion phase, and 2) landing in a position decent enough (close
enough to the best agent position).

Based on that motivation and to enhance the performance
of Eq. 8, the advantage of both the best global solution and
the individual’s history is taken in a new improved opera-
tion. The idea of an individual’s historical information
originally comes from PSO, which is widely used in many
algorithms such as gaining-sharing knowledge algorithm
[57] and bird swarm algorithm [58]. A piece of information
from global best information ensures the second require-
ment; meanwhile, the information of individual’s histori-
cal with random coefficient ensures the first requirement for
the newly updated solution. When combining three vectors,
newly generated solutions will be able not only to explore
the search space but also to explore the best global solution
and the best individual’s experiments. Following that direc-
tion, the new update mechanism in SLO by Eq. 9, Eq. 10
and Eq. 11 is proposed to improve the exploitation ability
as follows:

where:

X
g

local
 is the personal best position up to the iteration g;

r1, r2 are random numbers in the range [0, 1];

(9)dif
1
= (2 r

1
X
g

best
− Xg)

(10)dif
2
= (2 r

2
X
g

local
− Xg)

(11)Xg+1 =Xg + C ⋅ dif
1
+ C ⋅ dif

2

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 7 of 26 90

dif1 the difference between the current position and the
best solution found so far;
dif2 the difference between the current position and the
best solution found in the history of the current individ-
ual.

Especially with the parameter C, in a few iterations, Eq. 11
focuses on the exploration process with larger information
from both vectors, helping the algorithm to find the most
promising area in a larger jump. In later iterations, the algo-
rithm explores with the smaller jump from both vectors.

In the new Eq. 11, the newly updated position of an indi-
vidual is the result of adding two vectors to the original
agent, one is the vector that presents the direction of that

individual towards the best agent, and another is the direc-
tion towards its own experiences in history. The influences
of both two factors are determined by two random num-
bers r1 and r2 . They also play an extremely important role
in the update mechanism because they create random char-
acteristics for the operation, helping ISLO avoid the local
minimum and taking advantage of the two factors. Without
the appearance of r1 and r2 , the updated position is always
affected by the same portion of the best agent and the same
portion of its experience over generations, which may lead
to the degradation of the diversity of the population.

Exploitation phase improvement
From our observations, SLO takes advantage of the

global best solution and moving around to create new

(a) 1 generation (b) 2 generations

(c) 3 generations (d) 4 generations

Fig. 1 Position visualization of Xg+1 and Xg+1
oppo after 1 (a), 2 (b), 3 (c), 4 (d) generations on 2-D scale

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 8 of 26

exploited solutions. However, their operation (Eq. 2) is
based on the minus sign and absolute function. It makes
the newly updated solution always toward one direction of
the global best solution. Therefore, limiting the exploitation
ability of the algorithm in multi-dimensional space, where
the true global best solution may hide in the other direction
of the current global best solution. To address this problem,
the minus sign and absolute function in Eq. 2 is removed.
The OBL process helps ISLO to search faster in exploitation
[56]. OBL has successfully applied for grasshopper opti-
mization algorithm [59], grey wolf optimization [60], etc.

At first, Eq. 12 improves the exploitation. The N(0, 1) is a
normal variable to ensure that the newly created solution is
exploited in a random direction for each generation, and also
to ensure that the created solution jumps in a small range
near the Xbest solution due to the large value of C (linear
decrease from 2 to 0).

After that, OBL is applied to create an opposite solu-
tion (Eq. 13) of the above generated solution. Consequently,
ISLO searches for both the current position and its opposite
position via the global best solution simultaneously, help-
ing ISLO to exploit faster and better. Figure 1 visualizes the
position of Xg+1 and Xg+1

oppo after 1, 2, 3, 4 generations on the
2-D scale. In which the orange triangle (local best) is the
Xbest found so far, the red star is the global optimal point.

1. Create a new solution using

2. Create an opposite solution Xg+1
oppo by calculating the

opposing position to Xg+1 through Xbest .

Additional improvement
In SLO, the circling updating process presents the chasing
bait ball of fishes and hunt them starting from the edges. The
position of the sea lion is changed from the current position
toward a nearby position of the global best solution by using
the coefficient of the cosine function (Eq. 7). This may not
be enough to help sea lions catch the biggest ball of fish
because cosine is a periodic function. After being chased
by different sea lions at the same time, fishes change their
direction leading to the different movements of the bait ball.
Therefore, a more complicated trajectory of sea lions helps
them to catch more fish. Based on that motivation, in the
circling phase of sea lions, an additional operation using the
Levy-flight trajectory (LFT) is proposed for ISLO.

Levy flight [61] is a probability distribution proposed to
simulate bird foraging routes. As a global search operator,
LFT searches for space using short-distance walking com-
bined with long-distance jumping routes. These two abilities

(12)Xg+1 = Xbest + C N(0, 1) (2 r3 Xbest − Xg)

(13)Xg+1
oppo

= LB + UB − Xbest + r4 (Xbest − Xg+1)

help to improve the diversity and local exploitation ability
of the population, especially with the approximate formula
proposed by Mantegna [62]. In general, the Levy step size
can be expressed as:

where:

s is the step length of the LFT calculated by Mantegna
algorithm,
� , v are chosen from normal distribution,
� in range (0, 2],
Γ is a gamma function.

The purpose of using the Levy-flight technique for SLO is
to enhance the diversity and the local exploitation ability to
find global optima by its complex trajectory. So, the pro-
posed Levy-flight updating equation is as follows.

where:

ss is the step size related to the scales of the problem,
used to avoid Levy-flight jumping out of the search space
(for our use case, ss = 0.001)
⊗ is entry-wise multiplications,
Levy(S) is a set of Levy step lengths in a D-dimensional
space.

ISLO improves both the exploitation and exploration phases
of SLO by taking into account the combination of the MHM
of individuals and LFT for the exploration phase and using
the OBL operation and LFT for the exploitation phase.
These improvements (MHM, LFT, and OBL) form ISLO
as the improved SLO optimizer. The ISLO pseudo-code is
presented in Algorithm 2.

(14)Levy(s) ∼ |s|−1−𝛽 with 0 < 𝛽 ≤ 2

(15)s =
�

|v|1∕�

(16)� ∼ N(0, �2

�
)

(17)v ∼ N(0, �2

v
)

(18)�� =

[
Γ(1 + �). sin(�.�∕2)

Γ((1 + �)∕2).�.2(�−1)∕2

]1∕�

(19)�v = 1

(20)Xg+1 = Xbest + ss Levy(S)⊗ (Xbest − Xg)

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 9 of 26 90

3.2 Extreme Learning Machine (ELM)

The difference between ELM and MLP is the training algo-
rithm. ELM does not require gradient-based back propaga-
tion to work but uses a random process and Moore-Penrose
generalized inverse to set its weights. The architecture of
the single-hidden-layer ELM illustrated in Fig. 2—the left
side, and the mathematical formulas for the ELM model are
presented below. The ELM output is calculated as follows:

where:
(21)

f (x) =

L∑

i=1

�i gi(x) =

L∑

i=1

�i g(wi xj + bi) j = 1, ...,N

L is the number of hidden units,
N is the number of training samples,
g is the activation function,
x is an input vector,
w is the weight vector between the input and hidden layer,
b is the bias vector between the input and hidden layer,
� is the weight vector between the hidden and output layer
(called the hidden weight that includes both weights and
biases).
This � is a special matrix calculated by a pseudo-inverse
operation.

The shortening of the matrix equation can be written as
follows.

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 10 of 26

Yes

No

xO1

H2
x

Ipx

I1x

In
pu

t

H1
x

xHq

Encoder

Initialize
 Population

Best solution

Decoder

Improved Sea Lion

Optimization

x1

xN

bias

bias

0Lw

01w

11w

1Lw

NLw

N1w
xO2

xOw

01β

11β

21β
L1β

0mβ 1mβ

2mβ

Lmβ

y1

y
2

y
m

Extreme Learning Machine

Solution

01w 0Lw 1Lw N1w NLw 11w

biasweights

Input OutputHidden

Calculate
output weights

by
Moore-Penrose
inverse matrices

Input weights

Trained Model

Are optimization /

termination criteria

met?

Fig. 2 ELM architecture and encoding process

Initialize the population
(the input-weight of

the hybrid ELM model)

Calculate the fitness value
for each agent and

find the global best solution

While (iteration < max_iteration)

according to ISLO algorithm

Re-calculate the fitness value and
update the global best solution

Maximum
number of

input-weight of
the hybrid ELM model

Yes

No

Decode agents to
input-weight of

the hybrid ELM model

Training
Data

Calculate hidden-weight by
Moore-Penrose inverse matrics

Calculate output values with
validation data

Calculate loss value using
MSE function

Validation
Data

Calculate fitness of agents

Fig. 3 The work flow of ISLO-ELM hybrid model

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 11 of 26 90

where:

m is the number of outputs;
H is called hidden layer output matrix;
T is the training data target matrix.

Then the optimization objective is calculated as

Because H is invertible, 𝛽 can be calculated as

After having 𝛽 , we can make a prediction on the new data.
Finally, the ELM training process has the following steps:

1. Randomly assign weight wi and bias bi , i = 1, ..., L

2. Calculate hidden layer output H
3. Calculate output weight matrix 𝛽 = H+T

4. Use 𝛽 to make a prediction on new data T � = H𝛽

3.3 Training ELM Model by ISLO

The strength of ELM is speed, because it requires a little
time to learn the relation between input and output by the
random process and then just calculates the Moore-Penrose
inverse matrix. This is a trade-off between speed and gen-
eralization performance. Non-optimal input weights may
be randomly chosen, and this causes bad performance. In
order to tackle the problem, in this paper, ISLO is used to
replace the random process to find the optimal input-weight

(22)T =H�

(23)M =

⎡
⎢
⎢
⎢⎣

g(w1 ∗ x1 + b1) . . g(wL ∗ x1 + bL)

. .

. .

g(w1 ∗ xN + b1) g(wL ∗ xN + bL)

⎤
⎥
⎥
⎥⎦
N,L

(24)� =

⎡
⎢
⎢
⎢⎣

�T
1

.

.

�T
L

⎤
⎥
⎥
⎥⎦
L,m

(25)T =

⎡
⎢
⎢
⎢⎣

tT
1

.

.

tT
L

⎤
⎥
⎥
⎥⎦
N,m

(26)||H𝛽 − T|| = min
𝛽

||H𝛽 − T||

(27)𝛽 = H+T

for the ELM network (Fig. 2). This way forms the ISLO-
ELM model. There are two key aspects needed to be taken
into consideration, which are the formation of an agent in
ISLO, and the selection of fitness function.

1. Agent formulation: each agent in the population in ISLO
is presented as one solution for the hybrid ELM model,
which means that a search agent is a one-dimensional
vector created by concatenating all weights and biases
between the input and hidden layer. Therefore, the length
of a solution can be calculated by Eq. 28.

 where ni, nh is the number of input and hidden neurons,
respectively.

2. Fitness function: fitness value of each agent in ISLO
is considered as the loss value of the ELM model with
the set of parameters of the agent and the input data.
The loss function Mean Square Error (MSE) is used to
calculate the difference between the actual and predicted
output values by the generated agent for all samples in
the training set.

The ISLO workflow applied in this work to train ELM is
depicted in Fig. 3, and can generally be presented by the
following steps:

1. Initialization: pre-defined the number of search agents
in ISLO. Each set of input weights of the hybrid ELM
model is encoded to a vector that plays a role as an agent
in the ISLO population. (Fig. 2)

2. Calculate fitness value for each search agent: A solution
is decoded into the input weight of the network. Calcu-
late the hidden weight of the network by Moore-Penrose
inverse matrices based on training data. Data samples in
the validation set are then feed-forwarded through the
network, generating predicted output values. Finally, the
fitness value is calculated as the difference between the
predicted output and the ground truth value using the
MSE loss function.

3. Find the global best solution based on fitness value
4. Loop through maximum number of iterations
5. Update position of each agent by ISLO formulas
6. Re-calculate the fitness value and update the global best

solution
7. Repeat step 4 and step 6 until the difference is small

(close) enough or the maximum number of generations
is reached.

8. Return the best input-weight set of ELM model.

(28)size(solution) = (1 + ni) nh

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 12 of 26

4 Experiments

The ISLO optimization capability is tested by two folds:
with benchmark functions (theoretical experiments) and
with real datasets (practical experiments).

• For the theoretical experiments, 20 benchmark functions
are used. This set of benchmark functions covers a wide
range of functional groups, including classical unimodal
and multimodal functions, hybrid functions, and compo-

sition functions taken from the special session of CEC
2014 and CEC 2015 [4, 5]. ISLO is compared with other
algorithms in all four groups of meta-heuristic optimiza-
tion include evolutionary, swarm-based, physical-based,
and human-based algorithms.

• For practical experiments, the ISLO-ELM hybrid model
is proposed, where ISLO is used to optimize ELM. Dif-
ferent real public datasets are used: the Google trace
dataset (CPU and RAM), Internet traffic from the UK,
and EU countries. ISLO-ELM is compared with classic

Fig. 4 Examples of 3D plot for some of benchmark functions

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 13 of 26 90

models such as MLP, FLNN, CFNN, and ELM. It was
also compared with other hybrid models (OTWO-ELM
and SLO-ELM) to demonstrate the capability of ISLO in
optimization.

4.1 Theoretical Experiments

4.1.1 Benchmark Functions

The performance of ISLO has theoretically experimented
with 20 benchmark functions in 4 groups:

• Unimodal functions that have only one global optimal
point in the search space.

• Multimodal functions that have one global optimal point
along with several local minimums.

• Hybrid functions: variables are randomly divided into
some sub-components and then different basic unimodal
and multimodal functions are used for different sub-com-
ponents.

• Composition functions, which merge the properties of the
sub-functions better and maintains continuity around the
global/local optima.

A brief introduction about the function name, formula,
search space, and optimal value of each function is shown in
Table 1. More details about the formula and characteristics
are in [4] and [5]. The 3D plots of several benchmark func-
tions are presented in Fig. 4.

4.1.2 Model Comparison

The ISLO results with 20 benchmark functions are com-
pared with eight other algorithms. To be fair in the com-
parison experiment, all algorithms are set with the same
number of search agents (population size ps = 50) and the
same number of maximum generations (gmax = 1000). The
number of dimensions for each function is 30 dimensions.
The specific parameter for each algorithm is selected on the
basis of the original paper and combined with the trial-and-
error method in advance. The optimal parameter for each
algorithm can be found below:

• For GA [63], the crossover probability pc = 0.9 and the
mutation probability pm = 0.025

• For SAP-DE, weighting factor wf = 0.8 , crossover prob-
ability cr = 0.9 , F factor F = 1.0.

Table 1 Description of benchmark functions

Type Mathematical definition Range fmin

Unimodal f
1
(x) =

∑n

i=1
i ∗ x2

i
[− 100, 100] 0

f
2
(x) =

∑n

i=1
x2
i
+ (

1

2
∗
∑n

i=1
i ∗ xi)

2 + (
1

2
∗
∑n

i=1
i ∗ xi)

4 [− 100, 100] 0

f
3
(x) =

∑n

i=1
�xi� +

∏n

i=1
�xi� [− 100, 100] 0

f
4
(x) = (x

1
− 1)2 +

∑n

i=2
i ∗ (2x2

i
− xi−1)

2 [− 100, 100] 0

f
5
(x) =

∑n−1

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] [− 100, 100] 0

Multimodal
f
6
(x) = −a.exp(−b

�
1

n

∑n

i=1
x2
i
) + a + exp(1) − exp(

1

n

∑n

i=1
cos(cxi)) with a = 20

and b = 0.2

[− 100, 100] 0

f
7
(x) =

��
��x��2 − n

�2��
+

1

n

�
1

2
��x��2 +

∑n

i=1
xi

�
+

1

2

[− 100, 100] 0

f
8
(x) = 10D +

∑n

i=1
(x2

i
− 10 ∗ cos(2� ∗ xi)) [− 100, 100] 0

f
9
(x) =

∑n

i=1

∑5

j=1
jsin((j + 1)xi + j) [− 100, 100] 0

f
10
(x) = 1 − cos(2�

�∑D

i=1
x2
i
) + 0.1

�∑D

i=1
x2
i

[− 100, 100] 0

Hybrid f
11

 (function 17 in CEC 2014) [− 100, 100] 1700
f
12

 (function 18 in CEC 2014) [− 100, 100] 1800
f
13

 (function 20 in CEC 2014) [− 100, 100] 2000
f
14

 (function 6 in CEC 2014) [− 100, 100] 600
f
15

 (function 8 in CEC 2014) [− 100, 100] 800
Composition f

16
 (function 9 in CEC 2015) [− 100, 100] 900

f
17

 (function 10 in CEC 2015) [− 100, 100] 100
f
18

 (function 12 in CEC 2015) [− 100, 100] 1200
f
19

 (function 14 in CEC 2015) [− 100, 100] 1400
f
20

 (function 15 in CEC 2015) [− 100, 100] 1500

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 14 of 26

• For PSO [64], the cognitive learning rates c1 = c2 = 2.05 ,
and the inertia factor w are set linearly and reduce from
0.9 to 0.4 over the course of iteration.

• For HGS, the probability of updating position L = 0.08
and the highest hunger LH = 10000.

• For CHIO, the basic reproduction rate brr = 0.06 and the
maximum age of infected cases max_age = 150.

• For SLO and ISLO, hyper-parameters are set as described
in the original paper [3].

4.1.3 Measurement Methods and Parameters Settings

The experimental results of each model are produced by
calculating the mean (Eq. 29) and standard deviation std
(Eq. 30) of 50 times running with the algorithms and func-
tions mentioned above.

where:

i = 1, 2, ...,N

N is the size of the observation population;
ri are observations;
� is the population mean.

For each function, after calculating the values of mean and
std of each algorithm, the best algorithm will be denoted by
1st ranked and determined by the following rules:

1. The mean values are considered. If an algorithm has the
best value mean, it will be ranked as the best optimizer
(1st ranked).

2. In the case where two or more algorithms have the same
mean value, the one that has the most stable std value
will be chosen as the best.

3. The mean ranking for each type of benchmark function
(unimodal, multimodal, hybrid and composition) is cal-
culated to illustrate which algorithm performed best in
each set of functions.

 For example, unimodal has 5 functions f1 to f5 , then
the mean ranking of the ISLO algorithm in the unimodal
set is calculated as

(29)mean =
1

N

N∑

i=1

xi

(30)std =

√√√√ 1

N

n∑

i=1

(xi − �)2

(31)
(
rank

f1
ISLO

+ ... + rank
f5
ISLO

)
∕5

4.2 Practical Experiments

For the practical problem, our proposed ISLO-ELM model
is utilized to solve time series forecasting on the cloud com-
puting platform. Four datasets are used including CPU and
RAM from Google trace cluster, Internet traffic from the
UK, and EU countries.

The results of the proposed model ISLO-ELM are com-
pared with classic models such as MLP, CFNN, FLNN and
the original ELM. The optimizing capability of ISLO on
ELM is also validated against hybrids OTWO (OTWO-
ELM) and SLO (SLO-ELM).

4.2.1 Datasets

• Google cluster trace dataset: The most important data-
set in our experiments is gathered by Google on a clus-
ter of about 12500 machines [65] for 29 days, starting
from May 2011. Resources requirements and usage
data for each job are recorded by each machine in the
cluster, and then the data is managed by the cluster’s
management system. In the Google Trace dataset, two
extremely important columns contain information of
the central processing unit (CPU) and random access
memory (RAM) required for each job. For that reason,
we decide to choose these two data types as two time-
series datasets (called Google Trace CPU and Google
Trace RAM from here). The datasets are processed
and summarized in the 5-minute interval, containing
8351 data points, and considered as the total demand
for resources in the whole Google cluster.

• Internet traffic from the EU and EU countries: These
two sets of data, which are used for experiments in
[66], are recorded by two different ISPs. The EU Inter-
net Traffic dataset comes from a private ISP playing
a role as a reporter with centers in 11 European cit-
ies. The data correspond to a transatlantic link and
were collected from 06:57 hours on 7 June to 11:17
hours on 29 July 2005. The UK Internet Traffic rep-
resents aggregated traffic in the United Kingdom’s
academic network backbone. It was reported between
19 November 2004, at 09:30 hours and 27 January
2005, at 11:11 hours. Both two datasets are processed
and summarized every 5 minutes, creating EU Inter-
net Traffic (14773 records) and UK Internet Traffic
(19989 records) as the input in our experiments.

The feature engineering goes thought transformation raw
logs into time-series data [67]. After that, missing values are
checked. The smooth sliding transformation is an operation

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 15 of 26 90

that helps to remove short-term variations in order to reveal
long-term trends is done by seasonal-trend decomposition
using locally estimated scatterplot smoothing (STL). The
cleaned data are also checked against white noise, random-
ness and unit root with the augmented Dickey-Fuller (ADF)
test.

The characteristics of time-series data are ordered time-
dependency sequences. There is a temporal dependency
between observations that must be preserved during testing
and validation. The method used for cross-validating in this
work is built on a rolling basis known as the Time-Series-
Split approach in machine learning. In our experiments, the
size of the sliding windows is not changed, i.e. rolling basis
with fixed window’s size and fixed split ratio (70:15:15) for
train, test, and validation data.

4.2.2 Parameter Setting and Evaluation Metrics

As mentioned above, ISLO-ELM’s performance is com-
pared with five classic models: MLP, CFNN, FLNN, ELM,
and three hybrid-ELM models: OTWO-ELM, SLO-ELM,
ISLO-ELM. The hyper-parameter settings for each model
are described below:

• MLP, CFNN, ELM, and hybrid-ELM settings with the
same architectures include one input layer, one hidden
layer, and one output layer. The input size for all models
is based on the feature engineering for each dataset.

• FLNN with single input and output layer, the expansion
function is selected by the trial method as mentioned in
[6].

Table 2 Comparison of optimization results obtained for unimodal functions (f1–f5) and multimodal functions (f6–f10)

Function GA SAP-DE HI-WOA COA HGS M-LCO CHIO SLO ISLO

f1 Mean 2.13E-08 1.21E-04 0.00E+00 1.51E-03 0.00E+00 0.00E+00 2.69E-02 0.00E+00 0.00E+00
Std 3.53E-08 2.15E-04 0.00E+00 6.32E-03 0.00E+00 0.00E+00 3.59E-02 0.00E+00 0.00E+00
Rank 6 7 3 8 3 3 9 3 3

f2 Mean 2.71E+03 2.56E+04 8.88E+04 8.60E+04 0.00E+00 0.00E+00 8.06E+04 2.60E+04 0.00E+00
Std 4.22E+02 2.15E+04 1.70E+04 2.42E+04 0.00E+00 0.00E+00 1.37E+04 1.23E+04 0.00E+00
Rank 4 5 9 8 2 2 7 6 2

f3 Mean 1.24E+13 3.75E+15 2.23E-127 1.94E+01 0.00E+00 0.00E+00 5.11E+19 8.73E-49 0.00E+00
Std 2.67E+13 1.62E+16 6.11E-127 1.01E+01 0.00E+00 0.00E+00 1.46E+20 2.55E-48 0.00E+00
Rank 7 8 4 6 2 2 9 5 2

f4 Mean 4.67E+06 3.59E+06 6.67E-01 4.37E+06 6.67E-01 9.80E-01 5.81E+09 6.70E-01 6.67E-01
Std 1.41E+06 8.21E+06 7.14E-06 3.78E+06 1.43E-03 9.92E-03 2.14E+09 7.96E-03 5.42E-06
Rank 8 6 1 7 3 5 9 4 2

f5 Mean 8.30E+06 1.71E+07 2.63E+01 2.62E+07 2.77E+01 2.89E+01 1.22E+10 2.85E+01 2.75E+01
Std 2.81E+06 4.93E+07 8.71E-01 2.86E+07 2.45E-01 3.44E-02 3.79E+09 1.71E-01 4.07E-01
Rank 6 7 1 8 3 5 9 4 2

f6 Mean 8.5E+00 1.0E+01 1.3E-15 2.0E+01 4.4E-16 1.1E+00 2.0E+01 1.8E+01 4.4E-16
Std 5.2E-01 7.0E+00 2.0E-15 6.3E-04 0.0E+00 4.7E+00 6.5E-03 6.3E+00 0.0E+00
Rank 5 6 3 8 1.5 4 9 7 1.5

f7 Mean 1.2E+00 1.3E+00 6.3E-04 1.0E+00 0.0E+00 0.0E+00 1.2E+01 3.2E-03 0.0E+00
Std 2.7E-02 4.1E-01 2.8E-03 7.6E-02 0.0E+00 0.0E+00 8.5E-01 1.4E-02 0.0E+00
Rank 7 8 4 6 2 2 9 5 2

f8 Mean 1.0E+03 1.5E+03 3.7E+01 6.9E+02 0.0E+00 8.4E+00 4.5E+04 0.0E+00 0.0E+00
Std 1.2E+02 1.7E+03 5.4E+01 2.8E+02 0.0E+00 3.8E+01 6.0E+03 0.0E+00 0.0E+00
Rank 7 8 5 6 2 4 9 2 2

f9 Mean 9.3E+00 9.8E+00 6.1E+00 4.5E+00 0.0E+00 6.0E+00 1.2E+01 1.1E+00 0.0E+00
Std 3.3E-01 1.8E+00 5.1E+00 7.3E-01 0.0E+00 2.4E+00 3.1E-01 3.1E+00 0.0E+00
Rank 7 8 6 4 1.5 5 9 3 1.5

f10 Mean 2.6E+00 1.9E+00 2.3E-01 6.2E+00 0.0E+00 8.0E-02 2.4E+01 6.5E-02 0.0E+00
Std 2.0E-01 1.6E+00 1.2E-01 1.2E+00 0.0E+00 4.1E-02 7.7E-01 5.9E-02 0.0E+00
Rank 7 6 5 8 1.5 4 9 3 1.5

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 16 of 26

H(P) is the entropy of P.

5 Results and Discussion

5.1 Benchmark Functions Results

5.1.1 Unimodal and Multimodal Functions Results

The functions f1 – f10 are unimodal and multimodal func-
tions. These kinds of function are selected after a couple of
testing purposes. In particular, unimodal functions allow us
to evaluate the exploitation performance of meta-heuristic
optimizers since they only have one global optimal mini-
mum; multimodal functions help us see algorithms’ explora-
tion performance with several local minimum points, which
exponentially increases following the increase in search
space dimension.

In general, it can be seen from Table 2 that ISLO shows
the best performance among all algorithms chosen in most
test cases except f4 and f5 . Furthermore, while optimizing
several functions, ISLO can reach optimal value with decent
stability.

Accuracy and the stability
From the obtained results of unimodal and multimodal

functions in Table 2, it could be made the following
observations:

• ISLO achieves the best results in all test cases except
f4 and f5 . For example, in experiments with unimodal
function f1- f5 , ISLO can reach the global optimal, as well
as SLO, M-LCO, and HI-WOA models in the f1 func-
tion. ISLO, M-LCO, and HGS find the global optimal
for the functions f2 and f3. ISLO is ranked 2nd in f4,
f5, and the difference between the results of the ranked
1st (HI-WOA) and ISLO is not significant. In particular,
our improvement makes ISLO outperforms SLO in all
test cases. It proves that compared to the original SLO,
ISLO’s exploitation ability is significantly enhanced.
The results with unimodal functions indicate that ISLO
could lead the population to the global optimal position.
Furthermore, in addition to the best results in terms of
accuracy, ISLO also shows extreme stabilization since
the standard deviation values are 0 in all three cases.

• The results for multimodal functions f6– f10 indicate that
ISLO also has superior exploration ability. ISLO ranks
1st in 5 of 5 functions, and with four functions f7 − f10 ,
ISLO reaches the globally optimal values of the func-
tions, accompanied by relatively small standard devia-
tion values. Notably, ISLO’s results outperform SLO’s
results in both terms of accuracy and stability (except

• The number of epoch in NN models is set to 1000. The
maximum number of generations in metaheuristic algo-
rithms is also set to 1000. This setting is sufficient for all
algorithms to converge to their final results.

In the training phase of general network, mean squared
error (MSE) is used as the loss function. In the testing
phase, mean absolute error (MAE), root mean squared
error (RMSE), mean absolute percentage error (MAPE),
ackge, Kullback-Leibler divergence (KLD) [68] are used as
measurements for comparison. The Kling-Gupta efficiency
(KGE) [69] combines the three components of Nash-Sut-
cliffe efficiency (NSE) of model errors (i.e. correlation, bias,
ratio of variances or coefficients of variation) in a more bal-
anced way. It has value range from −Inf to 1. Essentially, the
closer to 1, the more accurate the model is. The KLD [70] is
used to measure how much a given arbitrary distribution is
away from the true distribution. If two distributions perfectly
match, KLD(P||Q) = 0 otherwise it can take values between
0 and ∞ . Lower the KLD value, the better matched the true
distribution with our approximation. The mathematical form
of these metrics are as follows.

where:

yi are observed value,
ŷi are predicted value,
r is correlation coefficient,
� 𝛽 =

𝜇ŷ

𝜇y

 is bias ratio,

� 𝛾 =
CVŷ

CVy

=
𝜎ŷ∕𝜇ŷ

𝜎y∕𝜇y

 is variability ratio,

CV is coefficient of variation,
� is mean,
� is standard deviation,
H(P, Q) is the cross entropy of P and Q

(32)MSE =
1

n

n∑

i=1

(yi − ŷi)
2

(33)RMSE =
√
MSE

(34)MAE =
1

n

n∑

i=1

|yi − ŷi|

(35)MAPE =
1

n

n∑

i=1

||||
yi − ŷi

yi

||||

(36)KGE =1 −
√
(r − 1)2 + (� − 1)2 + (� − 1)2

(37)

KLD(P||Q) = −
∑

x∈X

P(x)logQ(x) +
∑

x∈X

P(x)logP(x) = H(P,Q) − H(P)

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 17 of 26 90

function f7, SLO attains the same 1st ranking as ISLO).
It is a proof that the exploration ability is significantly
improved.

• We also visualize the mean ranking of all algorithms in
unimodal and multimodal functions in Fig. 6. ISLO is

ranked as the best optimizer for both types of benchmark
functions (2.2 for unimodal functions and 1.7 for multi-
modal functions).

(a) Unimodal (b) Multimodal

Fig. 5 Convergence speed of each algorithm on unimodal (a-left side) and multimodal (b-right side) functions

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 18 of 26

Convergence characteristic
The convergence curves in Fig. 5 show that with unimodal

and multimodal functions, most algorithms can converge at
the exact or near the global optimal point. Especially with
unimodal functions such as f1 and f3 . Our proposed model
ISLO starts to converge very fast right after a few iterations.
As can be seen, the results from ISLO are far better than
the original SLO in all cases, proving that exploitation and
exploration capacities in SLO are considerably enhanced.

5.1.2 Hybrid and Composition Functions Results

The functions f11– f20 are hybrid and composition func-
tions. In hybrid functions (f11– f15 , the variables are ran-
domly divided into sub-components which play a role as
input for different basic functions including both unimodal
and multimodal functions. To work well on these functions,

algorithms are required an extreme balance between exploi-
tation and exploration phases, because hybrid functions are
both unimodal and multimodal, and they own different prop-
erties for different variables sub-components. On the other
hand, optimization of composite mathematical functions (f16
– f20) is a very challenging task, because local optima are
only avoided by a proper balance between exploitation and
exploration.

In general, Table 3 shows that ISLO achieves competi-
tive results performance overall hybrid and composition
functions. ISLO results rank first in several cases such as
f11, f12, f16 and f19 . Also, as is observed in Fig. 7, ISLO’s
convergence curves are similar to those in unimodal and
multimodal functions, and ISLO still has a very fast conver-
gence after the first half of iteration because of its updating
mechanism.

The accuracy and the stability
The following comments are drawn from Table 3.

Table 3 Comparison of the optimization results obtained for hybrid functions (f11–f15) and composition functions (f16–f20)

Function GA SAP-DE HI-WOA COA HGS M-LCO CHIO SLO ISLO

f11 Mean 7.88E+06 3.28E+07 4.78E+06 1.39E+07 1.22E+07 1.18E+07 9.22E+06 3.53E+06 2.16E+06
Std 2.91E+06 2.18E+07 2.53E+06 1.41E+07 9.90E+06 1.06E+07 3.79E+06 1.98E+06 1.58E+06
Rank 4 9 3 8 7 6 5 2 1

f12 Mean 2.43E+08 3.09E+09 4.22E+07 6.65E+06 1.10E+08 4.34E+08 2.24E+08 4.95E+06 5.61E+05
std 8.04E+07 1.79E+09 1.03E+08 1.66E+07 1.74E+08 2.78E+08 2.18E+08 2.18E+07 1.53E+06
Rank 7 9 4 3 5 8 6 2 1

f13 Mean 6.39E+12 1.30E+05 1.83E+14 1.25E+07 8.28E+11 1.32E+12 5.23E+12 7.55E+08 1.62E+05
Std 3.71E+12 3.59E+04 2.87E+14 5.23E+07 1.58E+12 2.02E+12 1.18E+13 2.85E+09 7.15E+04
Rank 8 1 9 3 5 6 7 4 2

f14 Mean 6.293E+02 6.431E+02 6.405E+02 6.258E+02 6.418E+02 6.401E+02 6.228E+02 6.353E+02 6.341E+02
Std 1.214E+00 1.826E+00 2.064E+00 3.218E+00 1.896E+00 2.601E+00 1.262E+00 2.750E+00 2.892E+00
Rank 3 9 7 2 8 6 1 5 4

f15 Mean 1.028E+03 1.018E+03 1.089E+03 9.867E+02 1.143E+03 1.127E+03 1.276E+03 1.227E+03 1.106E+03
Std 1.395E+01 4.438E+01 7.539E+01 4.116E+01 3.242E+01 3.788E+01 4.634E+01 3.156E+01 3.189E+01
Rank 3 2 4 1 7 6 9 8 5

f16 Mean 9.132E+02 9.136E+02 9.134E+02 9.136E+02 9.136E+02 9.133E+02 9.132E+02 9.130E+02 9.129E+02
Std 1.328E-01 2.035E-01 3.438E-01 2.409E-01 2.430E-01 3.812E-01 2.358E-01 3.391E-01 3.592E-01
Rank 4 7 6 9 8 5 3 2 1

f17 Mean 3.99E+07 8.11E+07 3.76E+06 6.52E+06 5.87E+07 5.35E+07 6.55E+06 3.16E+07 2.80E+07
Std 4.57E+06 3.05E+07 3.25E+06 5.13E+06 2.49E+07 3.49E+07 2.86E+06 1.43E+07 1.24E+07
Rank 6 9 1 2 8 7 3 5 4

f18 Mean 3.29E+11 7.81E+13 9.19E+03 2.69E+09 1.21E+13 1.46E+11 1.10E+04 1.04E+10 1.11E+04
Std 4.73E+11 1.76E+14 3.55E+03 1.20E+10 4.41E+13 2.80E+11 3.74E+03 3.42E+10 3.81E+03
Rank 7 9 1 4 8 6 2 5 3

f19 Mean 9.06E+03 7.06E+03 4.74E+03 2.11E+03 4.30E+03 2.87E+03 4.82E+03 6.87E+03 1.73E+03
Std 3.51E+02 2.48E+03 1.52E+03 1.26E+02 1.16E+03 6.53E+02 1.20E+03 1.60E+03 3.78E+01
Rank 9 8 5 2 4 3 6 7 1

f20 Mean 3.018E+03 2.951E+03 2.829E+03 2.745E+03 3.044E+03 2.800E+03 2.331E+03 2.911E+03 2.839E+03
Std 3.659E+01 7.323E+01 6.992E+01 2.421E+02 4.993E+01 5.779E+01 1.579E+02 4.414E+01 6.245E+01
Rank 8 7 4 2 9 3 1 6 5

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 19 of 26 90

• Evidently that ISLO works well for hybrid functions (f11
– f15). In particular, it shows superior results for func-
tions f11 and f12 compared to state-of-the-art algorithms
such as HI-WOA and HGS. In the case of the function
f13 , although ISLO does not account for the first place,
it is still very competitive when its result is only worse
than SAP-DE. Even in the case of functions f14 and f15 ,
ISLO’s results are still better than SLO’s results, proving
a decent balance between the exploitation and explora-
tion phases, especially when compared with the original
SLO algorithm.

• For composition functions (f16– f20), ISLO perfor-
mance presents competitive results to other models.
ISLO ranked 1st place when solving functions f116 and
f19 . Specifically, in function f18 there is no big differ-
ences between ISLO’results and the best one HI-WOA

and the second best CHIO. Furthermore, the results of
ISLO again outperform the results of SLO in all cases.
It proved that our improvement makes ISLO better than
traditional one.

• ISLO ranking (Fig. 6) is not at the 1st place in most cases
(3/5). But overall ranking (mean ranking) shows that
ISLO is the best optimizer on both benchmark function
types (2.6 in hybrid functions and 2.8 in composition
functions).

The convergence speed
The convergence speed of all algorithms that work on

hybrid and composition functions is shown in Fig. 7. Since
these functions are difficult to converge on, only powerful
and efficient algorithms can converge to the optimal point.

Fig. 6 Visualization of mean ranking on unimodal, multimodal, hybrid, and composition functions of compared algorithms

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 20 of 26

Therefore, we can observe which algorithm works and which
algorithm does not work in these figures.

It is clear that ISLO always considerably improves its best
global fitness values in the second half of the iterations. The
reason is that in the first half of the iterations, ISLO is in its

exploration phase (since the value of C during that time is
always greater than 1, see Algorithm 2). After changing to
the exploitation phase, ISLO can exploit and converge to
the global minimum quickly, providing better results than
the others.

(a) Hybrid (b) Composition

Fig. 7 Convergence speed of each algorithm on hybrid (a-left side) and composition (b-right side) functions

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 21 of 26 90

Table 4 Comparison among
models on each dataset by
different measurements

The best value of each metric on each dataset is highlighted (as bold values)

Dataset Model MAE RMSE MAPE KGE KLD

Google Trace CPU MLP 0.075 0.099 0.089 0.843 2.525
CFNN 0.080 0.103 0.095 0.847 2.311
FLNN 0.132 0.159 0.170 0.700 3.693
ELM 0.090 0.119 0.111 0.753 2.508
OTWO-ELM 0.127 0.166 0.158 0.585 2.360
SLO-ELM 0.113 0.150 0.138 0.662 2.552
ISLO-ELM 0.080 0.105 0.098 0.755 2.361

Google Trace RAM MLP 0.014 0.016 0.070 0.866 2.804
CFNN 0.008 0.010 0.039 0.886 1.876
FLNN 0.010 0.013 0.048 0.906 1.809
ELM 0.009 0.013 0.045 0.834 1.897
OTWO-ELM 0.011 0.015 0.052 0.850 1.835
SLO-ELM 0.009 0.012 0.043 0.883 1.622
ISLO-ELM 0.009 0.013 0.041 0.883 1.599

EU Internet Traffic MLP 4.793 7.680 0.014 0.994 4.698
CFNN 4.848 7.340 0.014 0.993 4.865
FLNN 5.381 7.649 0.016 0.987 4.617
ELM 6.135 9.208 0.017 0.993 4.506
OTWO-ELM 6.434 9.470 0.018 0.995 4.593
SLO-ELM 5.295 7.859 0.014 0.990 4.515
ISLO-ELM 4.751 7.340 0.013 0.995 4.703

UK Internet Traffic MLP 4.635 8.234 0.009 0.995 4.817
CFNN 4.777 8.321 0.009 0.996 4.899
FLNN 4.971 8.648 0.010 0.994 4.996
ELM 4.754 8.589 0.010 0.993 4.918
OTWO-ELM 4.852 8.543 0.010 0.988 4.902
SLO-ELM 4.810 8.441 0.010 0.993 4.755
ISLO-ELM 4.549 8.142 0.009 0.993 4.774

Fig. 8 Prediction results of SLO-ELM and our ISLO-ELM on Google trace CPU data

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 22 of 26

5.2 Practical Test Results

Table 4 presents the results of all models in each dataset
evaluated by MAE, RMSE, MAPE, KGE and KLD meas-
urements. Figure 8 illustrates the comparison between the
predicted output and the ground truth of the models for the
Google trace CPU dataset. Figure 9 shows the performance
of different optimizers, including OTWO, SLO, ISLO and
the original ELM of the Google trace RAM dataset (Figs. 10
and 11). In general, our proposed ISLO-ELM model is very
competitive in working on all datasets with most metrics
such as MAE, RMSE, MAPE, and KLD metrics metrics.
Especially, it works well for the Internet traffic EU and UK
datasets.

• For the Google trace CPU dataset, MLP shows the best
results with MAE, RMSE and MAPE (3/5 metrics). Of
the hybrid models, only OTWO-ELM shows the best
result with KGE. Although ISLO-ELM belongs to the
better ones, its improvements for SLO are significant.

• For the Google trace RAM dataset, CFNN shows the
best performance when it reaches the best results on 3/5
metrics MAE, RMSE and MAPE. ISLO-ELM achieves
the best results only on the KLD. The improved operators
used in the ISLO algorithm are also efficient compared
to the traditional SLO for this data set.

• For the EU Internet traffic dataset, ISLO-ELM shows the
best results with MAE, RMSE, MAPE (3/5 metrics).

Fig. 9 Prediction results of MLP and our ISLO-ELM model on Google trace RAM data

Fig. 10 Prediction results of OTWO-ELM and our ISLO-ELM model on the UK Internet traffic data

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 23 of 26 90

• For the UK Internet traffic dataset, ISLO-ELM shows
the best results with MAE, RMSE, MAPE and KGE (4/5
metrics).

6 Conclusion and Future Works

In this paper, we proposed an improved version of Sea Lion
Optimization which is based on the historical movement of
sea lions in combination with the levy flight trajectory and
the idea of the opposition-based learning method, forming
an Improved Sea Lion Optimization (ISLO). The effective-
ness of ISLO is proved by both theoretical and practical
experiments.

In theoretical tests, 20 benchmark functions are used,
and the ISLO’s results are compared with eight recent
metaheuristic algorithms. In practical experiments, four dif-
ferent real and public datasets are used. The results of the
proposed ISLO-ELM are better than traditional models and
hybrid models in most cases, especially with Internet traffic
datasets. The results in both tests show that the proposed
ISLO outperforms the original SLO algorithm in balancing
the exploration and exploitation phase, also in finding global
optima. The hybrid ISLO-ELM is also better than several
traditional and hybrid models in optimizing neural networks
with real-world applications.

In the future, the auto-scaling module is planned to be
used in decentralized systems. The autoscaling system
includes two main components: the forecasting module
and the decision-making module. The forecasting module

will use designed models such as ISLO-ELM to predict the
incoming values. Meanwhile, the decision-making module
takes the information from the forecasting module and gives
the final decision on the resource. In such systems, data cura-
tion is also very important to monitor covariate shift, which
can degrade model performance.

Acknowledgements The authors would like to thank to all colleagues
and partners for knowledge sharing and supports for this research.

Author Contributions GN: Conceptualization, Data Curation, Formal
analysis, Funding Acquisition, Investigation, Methodology, Resources,
Software, Supervision, Writing - Original Draft, Writing – Review
and Editing. TT: Formal analysis, Software, Validation, Visualization,
Writing - Original Draft. TN: Data Curation, Investigation, Software,
Validation, Visualization, Writing - Original Draft. BMN: Conceptu-
alization, Investigation, Project administration, Funding Acquisition,
Writing - Original Draft, Writing – Review and Editing.

Funding This work is supported by the Ministry of Education and
Training of Vietnam under grant number B2020-BKA-13; VEGA
2/0125/20 New Methods and Approaches for Distributed Scalable
Computing; Artificial Intelligence for the European Open Science
Cloud (AI4EOSC) HE 101058593; the Operational Programme Inte-
grated Infrastructure for the project: International Center of Excellence
for Research on Intelligent and Secure Information and Communication
Technologies and Systems – Phase II (ITMS code: 313021Ư404), co-
funded by the European Regional Development Fund (ERDF).

Data Availability The authors declare that the data used in this article
are available to the public as presented in Sect. 4.2.1.

Declarations

Conflict of Interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Fig. 11 Prediction results of ELM and our ISLO-ELM model on the EU Internet traffic data

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 24 of 26

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Nguyen, B.M., Tran, D., Nguyen, G.: Enhancing service capability
with multiple finite capacity server queues in cloud data centers.
Cluster Comput. 19(4), 1747–1767 (2016). https:// doi. org/ 10.
1007/ s10586- 016- 0653-y

 2. Nguyen, B.M., Tran, T., Nguyen, T., Nguyen, G.: Hybridization of
galactic swarm and evolution whale optimization for global search
problem. IEEE Access 8, 74991–75010 (2020). https:// doi. org/ 10.
1109/ ACCESS. 2020. 29887 17

 3. Masadeh, R., Mahafzah, B.A., Sharieh, A.: Sea lion optimiza-
tion algorithm. Sea (2019). doi: https:// doi. org/ 10. 14569/ IJACSA.
2019. 01005 48

 4. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evalua-
tion criteria for the cec 2014 special session and competition on
single objective real-parameter numerical optimization. Computa-
tional Intelligence Laboratory, Zhengzhou University, Zhengzhou
China and Technical Report, Nanyang Technological University,
Singapore 635 (2013)

 5. Liang, J., Qu, B., Suganthan, P., Chen, Q.: Problem definitions
and evaluation criteria for the cec 2015 competition on learning-
based real-parameter single objective optimization. Technical
Report201411A, Computational Intelligence Laboratory, Zheng-
zhou University, Zhengzhou China and Technical Report, Nan-
yang Technological University, Singapore 29, 625–640 (2014)

 6. Nguyen, T., Nguyen, B.M., Nguyen, G.: Building resource auto-
scaler with functional-link neural network and adaptive bacterial
foraging optimization. In: International Conference on Theory and
Applications of Models of Computation, pp. 501–517 (2019). doi:
https:// doi. org/ 10. 1007/ 978-3- 030- 14812-6_ 31.Springer

 7. Kanawaday, A., Sane, A.: Machine learning for predictive main-
tenance of industrial machines using iot sensor data. In: 2017
8th IEEE International Conference on Software Engineering and
Service Science (ICSESS), pp. 87–90 (2017). doi: https:// doi. org/
10. 1109/ ICSESS. 2017. 83428 70. IEEE

 8. Gupta, B., Badve, O.P.: Garch and ann-based ddos detection and
filtering in cloud computing environment. Int. J. Embedded Syst.
9(5), 391–400 (2017). https:// doi. org/ 10. 1504/ IJES. 2017. 086721

 9. Nikravesh, A.Y., Ajila, S.A., Lung, C.-H.: Towards an autonomic
auto-scaling prediction system for cloud resource provisioning.
In: 2015 IEEE/ACM 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 35–45
(2015). doi: https:// doi. org/ 10. 1109/ SEAMS. 2015. 22. IEEE

 10. Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.: Auto-scaling
techniques for elastic applications in cloud environments. Depart-
ment of Computer Architecture and Technology, University of
Basque Country, Tech. Rep. EHU-KAT-IK-09 12, 2012 (2012)

 11. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed,
N.A., Arshad, H.: State-of-the-art in artificial neural network
applications: a survey. Heliyon 4(11), 00938 (2018). https:// doi.
org/ 10. 1016/j. heliy on. 2018. e00938

 12. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Umar,
A.M., Linus, O.U., Arshad, H., Kazaure, A.A., Gana, U., Kiru,
M.U.: Comprehensive review of artificial neural network appli-
cations to pattern recognition. IEEE Access 7, 158820–158846
(2019). https:// doi. org/ 10. 1109/ ACCESS. 2019. 29455 45

 13. Schmidhuber, J.: Deep learning in neural networks: an overview.
Neural Netw. 61, 85–117 (2015). https:// doi. org/ 10. 1016/j. neunet.
2014. 09. 003

 14. Ahmed, A.N., Van Lam, T., Hung, N.D., Van Thieu, N., Kisi, O.,
El-Shafie, A.: A comprehensive comparison of recent developed
meta-heuristic algorithms for streamflow time series forecasting
problem. Appl. Soft Comput. 105, 107282 (2021). https:// doi. org/
10. 1016/j. asoc. 2021. 107282

 15. Molina, D., Poyatos, J., Del Ser, J., García, S., Hussain, A., Her-
rera, F.: Comprehensive taxonomies of nature-and bio-inspired
optimization: Inspiration versus algorithmic behavior, criti-
cal analysis recommendations. Cogn. Comput. 12(5), 897–939
(2020). https:// doi. org/ 10. 1007/ s12559- 020- 09730-8

 16. Nguyen, T., Nguyen, T., Nguyen, B.M., Nguyen, G.: Efficient
time-series forecasting using neural network and opposition-
based coral reefs optimization. Int. J. Comput. Intell. Syst. 12,
1144–1161 (2019). https:// doi. org/ 10. 2991/ ijcis.d. 190930. 003

 17. Pao, Y.-H., Takefuji, Y.: Functional-link net computing: theory,
system architecture, and functionalities. Computer 25(5), 76–79
(1992). https:// doi. org/ 10. 1109/2. 144401

 18. Behera, S.K., Das, D.P., Subudhi, B.: Functional link artificial
neural network applied to active noise control of a mixture of tonal
and chaotic noise. Appl. Soft Comput. 23, 51–60 (2014). https://
doi. org/ 10. 1016/j. asoc. 2014. 06. 007

 19. Ayub, S., Saini, J.: Ecg classification and abnormality detection
using cascade forward neural network. Int. J. Eng. Sci. Technol.
(2011). https:// doi. org/ 10. 4314/ ijest. v3i3. 68420

 20. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine:
theory and applications. Neurocomputing 70(1–3), 489–501
(2006). https:// doi. org/ 10. 1016/j. neucom. 2005. 12. 126

 21. Zhu, Q.-Y., Qin, A.K., Suganthan, P.N., Huang, G.-B.: Evolu-
tionary extreme learning machine. Pattern Recogn. 38(10), 1759–
1763 (2005). https:// doi. org/ 10. 1016/j. patcog. 2005. 03. 028

 22. Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization
metaheuristics. Info. Sci. 237, 82–117 (2013). https:// doi. org/ 10.
1016/j. ins. 2013. 02. 041

 23. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in
large-scale global continues optimization: a survey. Info. Sci. 295,
407–428 (2015). https:// doi. org/ 10. 1016/j. ins. 2014. 10. 042

 24. Abu Arqub, O., Singh, J., Alhodaly, M.: Adaptation of kernel
functions-based approach with atangana-baleanu-caputo distrib-
uted order derivative for solutions of fuzzy fractional volterra and
fredholm integrodifferential equations. Math. Methods Appl. Sci.
(2021). https:// doi. org/ 10. 1002/ mma. 7228

 25. Abu Arqub, O., Singh, J., Maayah, B., Alhodaly, M.: Reproducing
kernel approach for numerical solutions of fuzzy fractional initial
value problems under the mittag-leffler kernel differential opera-
tor. Math. Methods Appl. Sci. (2021). https:// doi. org/ 10. 1002/
mma. 7305

 26. El-Sehiemy, R.A., Rizk-Allah, R.M., Attia, A.-F.: Assessment
of hurricane versus sine-cosine optimization algorithms for eco-
nomic/ecological emissions load dispatch problem. Int. Trans.
Electr. Energy Syst. 29(2), 2716 (2019). https:// doi. org/ 10. 1002/
etep. 2716

 27. Chui, K.T., Gupta, B.B., Vasant, P.: A genetic algorithm optimized
rnn-lstm model for remaining useful life prediction of turbofan
engine. Electronics 10(3), 285 (2021). https:// doi. org/ 10. 3390/
elect ronic s1003 0285

 28. Neumann, F., Witt, C.: Combinatorial optimization and computa-
tional complexity. In: Bioinspired Computation in Combinatorial

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10586-016-0653-y
https://doi.org/10.1007/s10586-016-0653-y
https://doi.org/10.1109/ACCESS.2020.2988717
https://doi.org/10.1109/ACCESS.2020.2988717
https://doi.org/10.14569/IJACSA.2019.0100548
https://doi.org/10.14569/IJACSA.2019.0100548
https://doi.org/10.1007/978-3-030-14812-6_31.
https://doi.org/10.1109/ICSESS.2017.8342870
https://doi.org/10.1109/ICSESS.2017.8342870
https://doi.org/10.1504/IJES.2017.086721
https://doi.org/10.1109/SEAMS.2015.22
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1109/ACCESS.2019.2945545
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.asoc.2021.107282
https://doi.org/10.1016/j.asoc.2021.107282
https://doi.org/10.1007/s12559-020-09730-8
https://doi.org/10.2991/ijcis.d.190930.003
https://doi.org/10.1109/2.144401
https://doi.org/10.1016/j.asoc.2014.06.007
https://doi.org/10.1016/j.asoc.2014.06.007
https://doi.org/10.4314/ijest.v3i3.68420
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.patcog.2005.03.028
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1016/j.ins.2014.10.042
https://doi.org/10.1002/mma.7228
https://doi.org/10.1002/mma.7305
https://doi.org/10.1002/mma.7305
https://doi.org/10.1002/etep.2716
https://doi.org/10.1002/etep.2716
https://doi.org/10.3390/electronics10030285
https://doi.org/10.3390/electronics10030285

International Journal of Computational Intelligence Systems (2022) 15:90

1 3

Page 25 of 26 90

Optimization, pp. 9–19. Springer (2010). https:// doi. org/ 10. 1007/
978-3- 642- 16544-3_2

 29. Abo-Hammour, Z., Alsmadi, O., Momani, S., Abu Arqub, O.:
A genetic algorithm approach for prediction of linear dynamical
systems. Math. Problems Eng. (2013). https:// doi. org/ 10. 1155/
2013/ 831657

 30. Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of
second-order boundary value problems using continuous genetic
algorithm. Info. Sci. 279, 396–415 (2014). https:// doi. org/ 10.
1016/j. ins. 2014. 03. 128

 31. Marini, F., Walczak, B.: Particle swarm optimization (pso): a tuto-
rial. Chemometr. Intell. Lab. Syst. 149, 153–165 (2015). https://
doi. org/ 10. 1016/j. chemo lab. 2015. 08. 020

 32. Nguyen, T., Nguyen, G., Nguyen, B.M.: Eo-cnn: an enhanced
cnn model trained by equilibrium optimization for traffic trans-
portation prediction. Procedia Comput. Sci. 176, 800–809 (2020).
https:// doi. org/ 10. 1016/j. procs. 2020. 09. 075

 33. Nguyen, B.M., Hoang, B., Nguyen, T., Nguyen, G.: nqsv-net: a
novel queuing search variant for global space search and workload
modeling. J. Ambient Intell. Hum. Comput. (2021). https:// doi.
org/ 10. 1007/ s12652- 020- 02849-4

 34. Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and
Neural Networks, pp. 43–55. Springer (2019). https:// doi. org/ 10.
1007/ 978-3- 319- 93025-1_4

 35. Piotrowski, A.P.: Review of differential evolution population size.
Swarm Evol. Comput. 32, 1–24 (2017). https:// doi. org/ 10. 1016/j.
swevo. 2016. 05. 003

 36. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M.,
Chen, H.: Harris hawks optimization: algorithm and applications.
Future Generation Comput. Syst. 97, 849–872 (2019). https:// doi.
org/ 10. 1016/j. future. 2019. 02. 028

 37. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm
for optimization: Squirrel search algorithm. Swarm Evol. Comput.
44, 148–175 (2019). https:// doi. org/ 10. 1016/j. swevo. 2018. 02. 013

 38. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv.
Eng. Softw. 95, 51–67 (2016). https:// doi. org/ 10. 1016/j. adven
gsoft. 2016. 01. 008

 39. Pierezan, J., Coelho, L.D.S.: Coyote optimization algorithm: a
new metaheuristic for global optimization problems. In: 2018
IEEE Congress on Evolutionary Computation (CEC), pp. 1–8
(2018). https:// doi. org/ 10. 1109/ CEC. 2018. 84777 69. IEEE

 40. Sharma, T.K., Abraham, A.: Artificial bee colony with enhanced
food locations for solving mechanical engineering design prob-
lems. J. Ambient Intell. Hum. Comput. 11(1), 267–290 (2020).
https:// doi. org/ 10. 1007/ s12652- 019- 01265-7

 41. Yang, Y., Chen, H., Heidari, A.A., Gandomi, A.H.: Hunger games
search: visions, conception, implementation, deep analysis, per-
spectives, and towards performance shifts. Expert Syst. Appl. 177,
114864 (2021). https:// doi. org/ 10. 1016/j. eswa. 2021. 114864

 42. Rizk-Allah, R.M.: A quantum-based sine cosine algorithm
for solving general systems of nonlinear equations. Artif.
Intell. Rev. 54(5), 3939–3990 (2021). https:// doi. org/ 10. 1007/
s10462- 020- 09944-0

 43. Muthiah-Nakarajan, V., Noel, M.M.: Galactic swarm optimiza-
tion: a new global optimization metaheuristic inspired by galactic
motion. Appl. Soft Comput. 38, 771–787 (2016). https:// doi. org/
10. 1016/j. asoc. 2015. 10. 034

 44. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse opti-
mizer: a nature-inspired algorithm for global optimization. Neural
Comput. Appl. 27(2), 495–513 (2016). https:// doi. org/ 10. 1007/
s00521- 015- 1870-7

 45. Rizk-Allah, R.M., El-Sehiemy, R.A., Wang, G.-G.: A novel par-
allel hurricane optimization algorithm for secure emission/eco-
nomic load dispatch solution. Appl. Soft Comput. 63, 206–222
(2018). https:// doi. org/ 10. 1016/j. asoc. 2017. 12. 002

 46. Rizk-Allah, R.M., Hassanien, A.E.: A movable damped wave algo-
rithm for solving global optimization problems. Evol. Intell. 12(1),
49–72 (2019). https:// doi. org/ 10. 1007/ s12065- 018- 0187-8

 47. Rizk-Allah, R.M., Hassanien, A.E., Oliva, D.: An enhanced
sitting-sizing scheme for shunt capacitors in radial distribution
systems using improved atom search optimization. Neural Com-
put. Appl. 32(17), 13971–13999 (2020). https:// doi. org/ 10. 1007/
s00521- 020- 04799-6

 48. Al-Betar, M.A., Alyasseri, Z.A.A., Awadallah, M.A., Doush,
I.A.: Coronavirus herd immunity optimizer (chio). Neural Com-
put. Appl. 33(10), 5011–5042 (2021). https:// doi. org/ 10. 1007/
s00521- 020- 05296-6

 49. Barshandeh, S., Haghzadeh, M.: A new hybrid chaotic atom
search optimization based on tree-seed algorithm and levy flight
for solving optimization problems. Eng. Comput. (2020). https://
doi. org/ 10. 1007/ s00366- 020- 00994-0

 50. Sree Ranjani, K.S., Murugan, S.: Memory based hybrid dragon-
fly algorithm for numerical optimization problems. Expert Syst.
Appl. 83, 63–78 (2017)

 51. Chen, Y., Li, L., Xiao, J., Yang, Y., Liang, J., Li, T.: Particle
swarm optimizer with crossover operation. Eng. Appl. Artif.
Intell. 70, 159–169 (2018). https:// doi. org/ 10. 1016/j. engap pai.
2018. 01. 009

 52. Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedfor-
ward neural networks using hybrid particle swarm optimization
and gravitational search algorithm. Appl. Math. Comput. 218(22),
11125–11137 (2012). https:// doi. org/ 10. 1016/j. amc. 2012. 04. 069

 53. Teo, J.: Exploring dynamic self-adaptive populations in differen-
tial evolution. Soft Comput. 10(8), 673–686 (2006). https:// doi.
org/ 10. 1007/ s00500- 005- 0537-1

 54. Tang, C., Sun, W., Wu, W., Xue, M.: A hybrid improved whale
optimization algorithm. In: 2019 IEEE 15th International Confer-
ence on Control and Automation (ICCA), pp. 362–367 (2019).
doi: https:// doi. org/ 10. 1109/ ICCA. 2019. 89000 03. IEEE

 55. Khatri, A., Gaba, A., Rana, K., Kumar, V.: A novel life choice-
based optimizer. Soft Comput. 24(12), 9121–9141 (2020). https://
doi. org/ 10. 1007/ s00500- 019- 04443-z

 56. Nguyen, T., Hoang, B., Nguyen, G., Nguyen, B.M.: A new
workload prediction model using extreme learning machine and
enhanced tug of war optimization. Procedia Comput. Sci. 170,
362–369 (2020). https:// doi. org/ 10. 1016/j. procs. 2020. 03. 063

 57. Mohamed, A.W., Hadi, A.A., Mohamed, A.K.: Gaining-sharing
knowledge based algorithm for solving optimization problems:
a novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern.
(2019). https:// doi. org/ 10. 1007/ s13042- 019- 01053-x

 58. Meng, X.-B., Gao, X.Z., Lu, L., Liu, Y., Zhang, H.: A new bio-
inspired optimisation algorithm: bird swarm algorithm. J. Exp.
Theor. Artif. Intell. 28(4), 673–687 (2016). https:// doi. org/ 10.
1080/ 09528 13X. 2015. 10425 30

 59. Ewees, A.A., Abd Elaziz, M., Houssein, E.H.: Improved grass-
hopper optimization algorithm using opposition-based learning.
Expert Syst. Appl. 112, 156–172 (2018). https:// doi. org/ 10. 1016/j.
eswa. 2018. 06. 023

 60. Long, W., Jiao, J., Liang, X., Cai, S., Xu, M.: A random opposi-
tion-based learning grey wolf optimizer. IEEE Access 7, 113810–
113825 (2019). https:// doi. org/ 10. 1109/ ACCESS. 2019. 29349 94

 61. Haklı, H., Uğuz, H.: A novel particle swarm optimization algo-
rithm with levy flight. Appl. Soft Comput. 23, 333–345 (2014).
https:// doi. org/ 10. 1016/j. asoc. 2014. 06. 034

 62. Mantegna, R.N.: Fast, accurate algorithm for numerical simula-
tion of levy stable stochastic processes. Phys. Rev. E 49(5), 4677
(1994). https:// doi. org/ 10. 1103/ physr eve. 49. 4677

 63. Nguyen, T., Tran, N., Nguyen, B.M., Nguyen, G.: A resource
usage prediction system using functional-link and genetic algo-
rithm neural network for multivariate cloud metrics. In: 2018
IEEE 11th Conference on Service-Oriented Computing and

https://doi.org/10.1007/978-3-642-16544-3_2
https://doi.org/10.1007/978-3-642-16544-3_2
https://doi.org/10.1155/2013/831657
https://doi.org/10.1155/2013/831657
https://doi.org/10.1016/j.ins.2014.03.128
https://doi.org/10.1016/j.ins.2014.03.128
https://doi.org/10.1016/j.chemolab.2015.08.020
https://doi.org/10.1016/j.chemolab.2015.08.020
https://doi.org/10.1016/j.procs.2020.09.075
https://doi.org/10.1007/s12652-020-02849-4
https://doi.org/10.1007/s12652-020-02849-4
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1007/978-3-319-93025-1_4
https://doi.org/10.1016/j.swevo.2016.05.003
https://doi.org/10.1016/j.swevo.2016.05.003
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.swevo.2018.02.013
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1109/CEC.2018.8477769
https://doi.org/10.1007/s12652-019-01265-7
https://doi.org/10.1016/j.eswa.2021.114864
https://doi.org/10.1007/s10462-020-09944-0
https://doi.org/10.1007/s10462-020-09944-0
https://doi.org/10.1016/j.asoc.2015.10.034
https://doi.org/10.1016/j.asoc.2015.10.034
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.asoc.2017.12.002
https://doi.org/10.1007/s12065-018-0187-8
https://doi.org/10.1007/s00521-020-04799-6
https://doi.org/10.1007/s00521-020-04799-6
https://doi.org/10.1007/s00521-020-05296-6
https://doi.org/10.1007/s00521-020-05296-6
https://doi.org/10.1007/s00366-020-00994-0
https://doi.org/10.1007/s00366-020-00994-0
https://doi.org/10.1016/j.engappai.2018.01.009
https://doi.org/10.1016/j.engappai.2018.01.009
https://doi.org/10.1016/j.amc.2012.04.069
https://doi.org/10.1007/s00500-005-0537-1
https://doi.org/10.1007/s00500-005-0537-1
https://doi.org/10.1109/ICCA.2019.8900003
https://doi.org/10.1007/s00500-019-04443-z
https://doi.org/10.1007/s00500-019-04443-z
https://doi.org/10.1016/j.procs.2020.03.063
https://doi.org/10.1007/s13042-019-01053-x
https://doi.org/10.1080/0952813X.2015.1042530
https://doi.org/10.1080/0952813X.2015.1042530
https://doi.org/10.1016/j.eswa.2018.06.023
https://doi.org/10.1016/j.eswa.2018.06.023
https://doi.org/10.1109/ACCESS.2019.2934994
https://doi.org/10.1016/j.asoc.2014.06.034
https://doi.org/10.1103/physreve.49.4677

 International Journal of Computational Intelligence Systems (2022) 15:90

1 3

 90 Page 26 of 26

Applications (SOCA), pp. 49–56 (2018). doi: https:// doi. org/ 10.
1109/ SOCA. 2018. 00014. IEEE

 64. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algo-
rithm: an overview. Soft Comput. 22(2), 387–408 (2018). https://
doi. org/ 10. 1007/ s00500- 016- 2474-6

 65. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces:
format+ schema, pp. 1–14. Google Inc., White Paper (2011)

 66. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale internet
traffic forecasting using neural networks and time series meth-
ods. Expert Syst. 29(2), 143–155 (2012). https:// doi. org/ 10. 1111/j.
1468- 0394. 2010. 00568.x

 67. Tran, N., Nguyen, T., Nguyen, B.M., Nguyen, G.: A multivariate
fuzzy time series resource forecast model for clouds using lstm
and data correlation analysis. Procedia Comput. Sci. 126, 636–645
(2018). https:// doi. org/ 10. 1016/j. procs. 2018. 07. 298

 68. Hershey, J.R., Olsen, P.A.: Approximating the kullback leibler
divergence between gaussian mixture models. In: 2007 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing-ICASSP’07, vol. 4, p. 317 (2007). doi: https:// doi. org/ 10.
1109/ ICASSP. 2007. 366913. IEEE

 69. Knoben, W.J., Freer, J.E., Woods, R.A.: Inherent benchmark or
not? comparing nash-sutcliffe and kling-gupta efficiency scores.
Hydrol. Earth Syst. Sci. 23(10), 4323–4331 (2019). https:// doi.
org/ 10. 5194/ hess- 23- 4323- 2019

 70. Van Erven, T., Harremos, P.: Rényi divergence and kullback-
leibler divergence. IEEE Trans. Info. Theory 60(7), 3797–3820
(2014). https:// doi. org/ 10. 1109/ TIT. 2014. 23205 00

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/SOCA.2018.00014
https://doi.org/10.1109/SOCA.2018.00014
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1111/j.1468-0394.2010.00568.x
https://doi.org/10.1111/j.1468-0394.2010.00568.x
https://doi.org/10.1016/j.procs.2018.07.298
https://doi.org/10.1109/ICASSP.2007.366913
https://doi.org/10.1109/ICASSP.2007.366913
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.1109/TIT.2014.2320500

	An Improved Sea Lion Optimization for Workload Elasticity Prediction with Neural Networks
	Abstract
	1 Introduction
	2 Related Work
	2.1 Workload Elasticity Prediction
	2.2 Neural Networks and Learning Ability
	2.3 Nature-Inspired Computing
	2.4 Sea Lion Optimization (SLO)
	2.5 The Work Steps of the Proposed Solution

	3 ISLO and Workload Elasticity Prediction
	3.1 Improved Sea Lion Optimization (ISLO)
	3.2 Extreme Learning Machine (ELM)
	3.3 Training ELM Model by ISLO

	4 Experiments
	4.1 Theoretical Experiments
	4.1.1 Benchmark Functions
	4.1.2 Model Comparison
	4.1.3 Measurement Methods and Parameters Settings

	4.2 Practical Experiments
	4.2.1 Datasets
	4.2.2 Parameter Setting and Evaluation Metrics

	5 Results and Discussion
	5.1 Benchmark Functions Results
	5.1.1 Unimodal and Multimodal Functions Results
	5.1.2 Hybrid and Composition Functions Results

	5.2 Practical Test Results

	6 Conclusion and Future Works
	Acknowledgements
	References

