
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems           (2022) 15:90  
https://doi.org/10.1007/s44196-022-00156-8

RESEARCH ARTICLE

An Improved Sea Lion Optimization for Workload Elasticity Prediction 
with Neural Networks

Binh Minh Nguyen1  · Trung Tran1 · Thieu Nguyen1 · Giang Nguyen2,3

Received: 23 February 2022 / Accepted: 17 October 2022 
© The Author(s) 2022

Abstract
The work in this paper presents a study into nature-inspired optimization applied to workload elasticity prediction using 
neural networks. Currently, the trend is for proactive decision support in increasing or decreasing the available resource in 
cloud computing. The aim is to avoid overprovision leading to resource waste and to avoid resource under-provisioning. The 
combination of optimization and neural networks has potential for the performance, accuracy, and stability of the prediction 
solution. In this context, we initially proposed an improved variant of sea lion optimization (ISLO) to boost the efficiency 
of the original in solving optimization problems. The designed optimization results are validated against eight well-known 
metaheuristic algorithms on 20 benchmark functions of CEC’2014 and CEC’2015. After that, improved sea lion optimization 
(ISLO) is used to train a hybrid neural network. Finally, the trained neural model is used for resource auto-scaling based on 
workload prediction with 4 real and public datasets. The experiments show that our neural network model provides improved 
results in comparison with other models, especially in comparison with neural networks trained using the original sea lion 
optimization. The proposed ISLO proved efficiency and improvement in solving problems ranging from global optimization 
with swarm intelligence to the prediction of workload elasticity.

Keywords Nature-inspired computing · Improved sea lion optimization · Memorizing historical movement · Levy flight 
trajectory · Opposition-based learning · Extreme learning machine · Neural network · Workload prediction

Abbreviations
ABC  Artificial bee colony
ADF  Augmented Dickey-Fuller
ARIMA  Autoregressive integratedmoving average
ARMA  Autoregressive moving average
CFNN  Cascade forward neural network

CHIO  Coronavirus herd immunity optimization
COA  Coyote optimization algorithm
CPU  Central processing unit
DE  Differential evolution
ELM  Extreme learning machine
FLNN  Functional-linked neural network
GA  Genetic algorithm
HGS  Hunger game search
HI −WOA  Hybrid improved WOA
IaaS  Infrastructure-as-a-Service
ISLO  Improved sea lion optimization
KGE  Kling–Gupta efficiency
KLD  Kullback–Leibler divergence
LCBO  Life choice-based optimization
LFT  Levy fight trajector
MA  Moving average
MAE  Mean absolute error
MAPE  Mean absolute percentage error
MHM  Memorizing historical movement
M − LCO  Modified version of LCBO
MLP  Multi-layer perceptron
MSE  Mean squared error
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NN  Neural network
OBL  Opposition-based learning
OTWO  Enhanced tug of war optimization
PSO  Particle swarm optimization
QSO  Qeuing search optimization
RAM  Random access memory
RMSE  Root mean squared error
SAP − DE  Surrogate assisted parameter adapted DE
SLO  Sea lion optimization
STL  Seasonal-trend decomposition using locally 

estimated scatterplot smoothing
WOA  Whale optimization algorithm

1 Introduction

Cloud computing is already a mainstream model for 
resource-intensive applications. Most Infrastructure-as-a-
Service (IaaS) offer at least one resource monitoring solution 
for customers, who can rely on collected data and thresh-
olds to decide the amount of resources and scaling moments 
themselves. However, wasting and lacking resources prob-
lems occur because it is difficult to determine exactly the 
scaling moments using the threshold approach. To improve 
the quality of resource provision service, proactive workload 
prediction is investigated for effective resource management 
in advance [1].

Neural network have been developed and widely applied 
to classification, pattern recognition, and forecasting solu-
tions. These networks are not intended to be realistic models 
of the brain, but rather robust algorithms and data struc-
tures capable of modeling difficult problems. Neural net-
works have units (neurons) organized in layers. They can 
be divided into shallow (one hidden layer) and deep (more 
hidden layers) networks. Through proper training, the net-
work can learn how to optimally represent inputs to output 
variables, and therefore, learn how to make predictions.

With the current boom of bio- and nature-inspired meth-
ods, they are furthermore improved in various ways, such 
as stochastic components, hybridization, and evolution. The 
aim is to avoid local optima in the global optimization search 
process in a better way to archive faster computation time, 
training with less data while maintaining acceptable high 
accuracy without significantly increasing model complex-
ity [2].

In this context, our contributions presented in this study 
are as follows.

• To study various effects such as memorizing histori-
cal movement (MHM), Levy flight trajector (LFT), 
and opposition-based learning (OBL) on performance 
improvement of metaheuristic optimization.

• To improve the original sea lion optimization (SLO) [3] 
by the combination of MHM and LFT in the explora-
tion phase and OBL in the exploitation phase. The novel 
improved optimizer is called ISLO.

• To carefully evaluate the proposed optimizer with the 
CEC 2014 [4] and CEC 2015 functions [5] and to dem-
onstrate its effectiveness.

• To use ISLO to train neural networks models to predict 
system workloads with real public datasets. The results 
showed that the model offers improvements in the con-
vergence, stability, and prediction accuracy performance 
compared to other optimizers while integrating with neu-
ral networks for modeling.

The remainder of the paper is organized as follows. Section 2 
provides an overview and the current situation with nature-
inspired optimization, neural network modeling, including 
the training process and data processing, and preparation 
for time series modeling. Section 2.4 provides a detailed 
look at the design and implementation of the original sea 
lion optimization algorithm (SLO). Section 2.5 describes the 
work steps of the proposed solution. Section 3 describes our 
proposed improved variant of sea lion optimization ISLO in 
Sect. 3.1 and our hybrid neural network model, specifically 
the extreme learning machine (ELM) in Sect. 3.2 trained 
by ISLO (Sect. 3.3). Experiments including their setting, 
evaluation metrics, benchmark functions, and datasets are 
described in detail in Sect. 4. Experiment results and dis-
cussion of the results are presented in Sect. 5 with com-
parison with other neural network models trained by other 
approaches. Finally, the conclusions and future work are 
given in Sect. 6.

2  Related Work

2.1  Workload Elasticity Prediction

Prediction of workload elasticity is one of the application 
problems in cloud computing. It comes from the record-
ing of data logs in cloud data centers [6] to provide better 
decision support for resource elasticity. Similar time-ordered 
data are available in other business sectors, such as weather 
prediction, financial stocks, or healthcare monitoring. Work-
load elasticity is also called resource auto-scaling, which 
is a big issue to be tackled to give cloud servers a flexible 
ability like being adaptive and scalable with automatically 
recovering and effective resource allocation.

There are many approaches to dealing with time-series 
data. The most mentioned methods come from statistics [7] 
such as autoregressive integrated-moving average (ARIMA), 
autoregressive moving average (ARMA), moving average 
(MA) and its variance like general autoregressive conditional 
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heteroscedastic [8]. The next direction goes through machine 
learning and deep learning as reported in [9, 10] for larger 
datasets. Deep learning models are favorite with competitive 
performance. However, they require a larger amount of data 
to train and computational power.

2.2  Neural Networks and Learning Ability

In the last three-decade, neural networks have been widely 
applied to real-world applications such as classification, pat-
tern recognition regression, and forecasting problems [11, 
12]. The most well-known and often-used model in this cat-
egory is multi-layer perceptron (MLP) and its subcategories. 
These neural networks provide learning ability with simple 
structures. There are several ways to increase neural network 
performance: 

1. Using more complex structured layers such as deep 
learning,

2. Replacing gradient descent training algorithm with 
nature-inspired algorithms,

3. Replacing hidden layers with different techniques to 
form different and more effective variants.

In the first way, deep learning requires more data for model 
training, which comes with requirements on computational 
power with the promise in predictive quality [13]. The sec-
ond way tries to improve neural network performance is to 
use other methods to train neural networks instead of tradi-
tional gradient descent ones [14–16].

In the third way, here are attempts to increase neural 
network performance by modifying their structure without 
increasing the complexity (shallow learning). Functional-
linked neural network is one such variant [17]. Instead of 
using the hidden layer to learn a non-linear relationship 
between input and output, they use a set of expansion func-
tions to learn a non-linear relationship [18]. However, func-
tional-linked neural network are domain-specific dependent, 
i.e., the correct expansion function has to be set based on 
concrete datasets to archive the best results.

Other types of MLP are feed-forward neural network, cas-
cade forward neural network (CFNN) [19], ELM [20]. The 
difference between ELM and MLP is the calculation of the 
weights of the network. In ELM, the weights between input 
and hidden layer are randomly chosen. The weights between 
the hidden and output layer are calculated based on the gen-
eralized inverse operation of the hidden layer output matrix. 
ELM not only learns much faster with better generalization 
performance than traditional gradient-based learning algo-
rithms but also avoids many difficulties faced by gradient-
based learning methods such as stopping criteria, learning 
rate, learning epochs, and local minima. However, the prob-
lem of ELM is the requirement of more hidden neurons than 

traditional gradient-based learning algorithms and leads to 
the ill-condition problem due to randomly selecting input 
weights and hidden biases. In [21], the authors proposed 
an evolutionary ELM using the differential evolution (DE) 
algorithm to select input weights and using Moore–Penrose 
generalized inverse to analytically determine output weights. 
These improvements can bring good performance and make 
a compact ELM network.

In this work, the motivation is to propose a new low-cost 
hybrid model using nature-inspired computation to train 
neural network models for the prediction of workload elas-
ticity with data logs from the underlying monitoring system.

2.3  Nature‑Inspired Computing

Recently, an impressive variety of nature-inspired algo-
rithms (metaheuristic) has been investigated and reported 
[22, 23]. The optimization problems that attracted the atten-
tion of these approaches have a large variance, ranging from 
single-objective to multi-objective, continuous to discrete, 
constrained to unconstrained. Solving these problems is not 
a straightforward task due to their complex behavior [24, 
25]. Nature-inspired algorithms provide a solution to many 
application problems [26, 27]. They are designed to achieve 
approximately optimal solutions in an acceptable time range 
for NP-hard (NP-hardness or non-deterministic polynomial-
time hardness) problems [28].

Most of the classical metaheuristic algorithms have been 
developed a long time ago, like genetic algorithm (GA) [29, 
30], particle swarm optimization (PSO) [31]. Despite their 
achievements, novel and improved evolutionary approaches 
have emerged successfully with a great number of new 
metaheuristics inspired by evolutionary or behavioral pro-
cesses. These new-generation algorithms are often called 
nature-inspired algorithms. The entire group of these algo-
rithms can be classified into four categories [32, 33].

• Evolutionary algorithms with the GA mentioned above, 
which mathematically mimics Darwinian evolution laws 
[34]. Differential evolution also belongs to this group 
with its adaptive variants. The search process starts with 
randomly generated solutions that evolve continuously 
throughout generations [35].

• Swarm-based algorithms or swarm intelligence refer to 
the collective behaviors of wild animals, e.g., birds, cats, 
and bacteria and mimic their social interactions [36]. The 
optimization process in these algorithms is mainly char-
acterized by the ability to explore based on the diversity 
of platforms and develop exploitation based on searching 
for the best solution [37]. The typical examples are par-
ticle swarm optimization, whale optimization algorithm 
(WOA) [38], coyote optimization algorithm (COA) [39] 
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artificial bee colony (ABC) [40], and hunger game search 
(HGS) [41].

• Physics-inspired algorithms mainly simulate physical 
phenomena that occur in nature by mathematical for-
mulas, e.g., quantum-based sine cosine algorithm [42] 
or imitating physical principles in the universe such as 
galactic swarm optimization [43], multi-verse optimiza-
tion [44], parallel hurricane optimization algorithm [45], 
movable damped wave algorithm [46], improved atom 
search optimization [47].

• Human-inspired algorithms are unique because they 
draw inspiration from several phenomena commonly 
associated with human behavior, lifestyle, or percep-
tion. Recent examples are coronavirus herd immunity 
optimization (CHIO) [48] qeuing search optimization 
(QSO) [33].

Among these types of nature-inspired algorithms, swarm 
intelligence is the most popular because it is easy to under-
stand and implement. There are a number of techniques to 
improve their performance such as levy-flight trajectory 

[49], memory-based method [50], crossover operations [51], 
opposition-based learning [16] and hybridization [2].

In machine learning, nature-inspired algorithms are often 
used for feature selection and hyper-parameter tuning. In this 
work, the use of such algorithms is investigated to optimize 
neural networks [52], that is, using ISLO to train neural net-
works for workload prediction based on time-series data.

2.4  Sea Lion Optimization (SLO)

SLO was introduced to solve global-scale optimization. It 
mimics the hunting behaviors of sea lions consisting of the 
way they encircle and capture prey or how they use their 
tail and whiskers. SLO can provide very competitive results 
compared with other well-known particle swarm optimiza-
tion algorithms when working on different benchmark func-
tions. More details about SLO are provided in the original 
work [3].

In this Section, the most important operations of SLO 
are summarized and the SLO pseudo-code is presented in 
Algorithm 1.
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1. Detecting and tracking phase
  At first, SLO constructs N (the size of the population) 

D-dimensional solutions (Eq. 1) by using uniform ran-
dom distribution in the search space as follows. Then, 
in the swarm of sea lions, they identify the location of 
the prey and gather other members who will join the 
subgroup to organize the net following the encircling 
mechanism. The prey is considered the best current solu-
tion or the solution closest to the optimal solution. These 
behaviors are presented in Eq. 2. 

 where:

i = 1, 2,⋯ ,N

j = 1, 2,⋯ ,D

Xinit
i,j

 is the initial position vector of ith solution;
Xmin
i,j

 denote the minimum value for the jth dimension 
of ith solution;
Xmax
i,j

 denote the maximum values for the jth dimension 
of ith solution;
rand is a uniform random value in the interval [0, 1].

   Solutions are evaluated for their fitness using the 
objective function. 

 where:

X
g

best
 is the position vector of the best solution;

Xg is the sea lion in iteration g;
g is the current iteration of generations;
gmax is the maximum number of generations;
r is a random value in the range [0, 1];
that is multiplied by 2 to increase the search operation 
range;
Xg+1 is the new position of the search agent after 
updating;
C is a variable with linearly decreased values from 
2 to 0 throughout the iteration, indicating the encir-
cling mechanism of the sea lion group when they move 
towards the prey and surround them.

(1)Xinit
i,j

= Xmin
i,j

+ randi,j (X
max
i,j

− Xmin
i,j

)

(2)Xg+1 =Xbest − C ∣ 2 r Xbest − Xg ∣

(3)C = 2

(
1 −

g

gmax

)

2. Vocalization phase When a sea lion recognizes a group 
of its prey (such as fish), it will call other sea lions in 
its group to gather and create a net to capture the prey. 
That sea lion is considered as leader and it will lead the 
group of sea lions toward and decide the behaviors of 
the group. These behaviors are mathematically modeled 
as shown in Eq. 4, Eq. 5 Eq. 6. 

 where:

SPleader is the value that illustrates the decision of 
leader followed by other sea lions in the group;
� is the angle of voice reflection in the water;
� is the angle of voice refraction in the water;

   In our work, � = 2�r and � = 2�(1 − r) where r is a 
random number in the range [0, 1].

3. Attacking phase (Exploitation phase) The hunting 
activities of sea lions led by leader are described in two 
phases as follows:

• Dwindling encircling technique: This behavior 
depends on the value of C in Eq. 2. C is linearly 
decreased from 2 to 0 throughout the iteration, so 
this allows the search space around the current best 
position to shrink and force other search agents to 
update in this search space as well. Therefore, a 
newly updated position of a sea lion can be located 
anywhere in the search space between its current 
position and the location of the best agent. present.

• Circling updating position: Sea lions chase the bait 
ball of fishes and hunt them starting from the edges 
by Eq. 7, with m a random number in the range 
[−1, 1] . 

4. Searching for prey (Exploration phase) In the explo-
ration phase, the search agents update their positions 
based on a randomly selected sea lion. The condition 
that allows the exploitation phase to take place is when 
the value of C becomes greater than 1, and the process 
of finding a new agent is presented by Eq. 8. 

(4)SPleader = ∣ (V1(1 + V2)∕V2 ∣

(5)V1 = sin(�)

(6)V2 = sin(�)

(7)Xg+1 = Xbest + cos(2�m) ∣ Xbest − Xg ∣
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 where Xt
rand

 is a random sea lion randomly selected from 
the current population. r is a random value in the range 
[0, 1].

The results of the work [3] show that SLO faces obvious 
problems with nature-inspired algorithms, such as being 
trapped in local optima and slow convergence. In this work, 
both exploitation and exploration phase for ISLO (Section 3) 
is improved compared to the original SLO.

2.5  The Work Steps of the Proposed Solution

Based on the context presented above, the remainder of this 
work proceeds through the following steps. 

1. To propose an improved variant of SLO called Improved 
Sea Lion Optimization (ISLO) by embracing the idea of 
MHM of sea lions into account to upgrade the explora-
tion ability in combination with LFT and the idea of 
OBL to enhance SLO exploitation capacity.

2. To test the convergence ability of ISLO by benchmark 
functions of 4 function types: unimodal, multimodal, 
hybrid, and composition functions. After that, ISLO 
performance is compared with the original SLO and six 
well-known optimization algorithms:

• Genetic algorithm and an improved version of the 
DE algorithm - surrogate assisted parameter adapted 
DE (SAP-DE) [53] in the evolutionary-based group;

• COA algorithm, HGS algorithm and a modified ver-
sion of WOA - hybrid improved WOA (HI-WOA) 
[54] in the swarm-based group;

• CHIO and a modified version of life choice-based 
optimization (LCBO) called modified version of 
LCBO (M-LCO) [55] in the human-based group.

   The results show that ISLO provides superior final 
fitness values and decent convergence speed compared 
to the others.

3. To propose a hybrid model called ISLO-ELM, in which 
ISLO is used for training ELM. The aim is to model 
workload elasticity prediction based time-series data 
logs for auto-scaling demand in cloud data centers with-
out significantly increasing complexity.

4. ISLO-ELM performance is validated on 4 real and pub-
lic datasets of resource workload of server clusters and 
Internet traffic. The results are compared with MLP, 
CFNN, FLNN and ELM in terms of forecast quality. 
The optimization capacity of ISLO is also tested against 

(8)Xg+1 = X
g

rand
− C ∣ 2 r X

g

rand
− Xg ∣ enhanced enhanced tug of war optimization (OTWO) 

[56] and SLO to optimize ELM (OTWO-ELM and SLO-
ELM). The outcome shows that the model is very com-
petitive and has better potential results compared to the 
others.

3  ISLO and Workload Elasticity Prediction

3.1  Improved Sea Lion Optimization (ISLO)

Exploration phase improvement
In the SLO exploration phase, newborn agents cause poor 
exploration search ability due to the inheriting features of 
existing solutions (randomly chosen agent Xg

rand
 but still in 

the current population). To tackle this problem, a newly cre-
ated solution needs to satisfy two requirements: 1) carrying 
random features to ensure a strong capability of the explora-
tion phase, and 2) landing in a position decent enough (close 
enough to the best agent position).

Based on that motivation and to enhance the performance 
of Eq. 8, the advantage of both the best global solution and 
the individual’s history is taken in a new improved opera-
tion. The idea of an individual’s historical information 
originally comes from PSO, which is widely used in many 
algorithms such as gaining-sharing knowledge algorithm 
[57] and bird swarm algorithm [58]. A piece of information 
from global best information ensures the second require-
ment; meanwhile, the information of individual’s histori-
cal with random coefficient ensures the first requirement for 
the newly updated solution. When combining three vectors, 
newly generated solutions will be able not only to explore 
the search space but also to explore the best global solution 
and the best individual’s experiments. Following that direc-
tion, the new update mechanism in SLO by Eq. 9, Eq. 10 
and Eq. 11 is proposed to improve the exploitation ability 
as follows:

where:

X
g

local
 is the personal best position up to the iteration g;

r1, r2 are random numbers in the range [0, 1];

(9)dif
1
= (2 r

1
X
g

best
− Xg)

(10)dif
2
= (2 r

2
X
g

local
− Xg)

(11)Xg+1 =Xg + C ⋅ dif
1
+ C ⋅ dif

2
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dif1 the difference between the current position and the 
best solution found so far;
dif2 the difference between the current position and the 
best solution found in the history of the current individ-
ual.

Especially with the parameter C, in a few iterations, Eq. 11 
focuses on the exploration process with larger information 
from both vectors, helping the algorithm to find the most 
promising area in a larger jump. In later iterations, the algo-
rithm explores with the smaller jump from both vectors.

In the new Eq. 11, the newly updated position of an indi-
vidual is the result of adding two vectors to the original 
agent, one is the vector that presents the direction of that 

individual towards the best agent, and another is the direc-
tion towards its own experiences in history. The influences 
of both two factors are determined by two random num-
bers r1 and r2 . They also play an extremely important role 
in the update mechanism because they create random char-
acteristics for the operation, helping ISLO avoid the local 
minimum and taking advantage of the two factors. Without 
the appearance of r1 and r2 , the updated position is always 
affected by the same portion of the best agent and the same 
portion of its experience over generations, which may lead 
to the degradation of the diversity of the population.

Exploitation phase improvement
From our observations, SLO takes advantage of the 

global best solution and moving around to create new 

(a) 1 generation (b) 2 generations

(c) 3 generations (d) 4 generations

Fig. 1  Position visualization of Xg+1 and Xg+1
oppo after 1 (a), 2 (b), 3 (c), 4 (d) generations on 2-D scale
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exploited solutions. However, their operation (Eq. 2) is 
based on the minus sign and absolute function. It makes 
the newly updated solution always toward one direction of 
the global best solution. Therefore, limiting the exploitation 
ability of the algorithm in multi-dimensional space, where 
the true global best solution may hide in the other direction 
of the current global best solution. To address this problem, 
the minus sign and absolute function in Eq. 2 is removed. 
The OBL process helps ISLO to search faster in exploitation 
[56]. OBL has successfully applied for grasshopper opti-
mization algorithm [59], grey wolf optimization [60], etc.

At first, Eq. 12 improves the exploitation. The N(0, 1) is a 
normal variable to ensure that the newly created solution is 
exploited in a random direction for each generation, and also 
to ensure that the created solution jumps in a small range 
near the Xbest solution due to the large value of C (linear 
decrease from 2 to 0).

After that, OBL is applied to create an opposite solu-
tion (Eq. 13) of the above generated solution. Consequently, 
ISLO searches for both the current position and its opposite 
position via the global best solution simultaneously, help-
ing ISLO to exploit faster and better. Figure 1 visualizes the 
position of Xg+1 and Xg+1

oppo after 1, 2, 3, 4 generations on the 
2-D scale. In which the orange triangle (local best) is the 
Xbest found so far, the red star is the global optimal point. 

1. Create a new solution using 

2. Create an opposite solution Xg+1
oppo by calculating the 

opposing position to Xg+1 through Xbest . 

Additional improvement
In SLO, the circling updating process presents the chasing 
bait ball of fishes and hunt them starting from the edges. The 
position of the sea lion is changed from the current position 
toward a nearby position of the global best solution by using 
the coefficient of the cosine function (Eq. 7). This may not 
be enough to help sea lions catch the biggest ball of fish 
because cosine is a periodic function. After being chased 
by different sea lions at the same time, fishes change their 
direction leading to the different movements of the bait ball. 
Therefore, a more complicated trajectory of sea lions helps 
them to catch more fish. Based on that motivation, in the 
circling phase of sea lions, an additional operation using the 
Levy-flight trajectory (LFT) is proposed for ISLO.

Levy flight [61] is a probability distribution proposed to 
simulate bird foraging routes. As a global search operator, 
LFT searches for space using short-distance walking com-
bined with long-distance jumping routes. These two abilities 

(12)Xg+1 = Xbest + C N(0, 1) (2 r3 Xbest − Xg)

(13)Xg+1
oppo

= LB + UB − Xbest + r4 (Xbest − Xg+1)

help to improve the diversity and local exploitation ability 
of the population, especially with the approximate formula 
proposed by Mantegna [62]. In general, the Levy step size 
can be expressed as:

where:

s is the step length of the LFT calculated by Mantegna 
algorithm,
� , v are chosen from normal distribution,
� in range (0, 2],
Γ is a gamma function.

The purpose of using the Levy-flight technique for SLO is 
to enhance the diversity and the local exploitation ability to 
find global optima by its complex trajectory. So, the pro-
posed Levy-flight updating equation is as follows.

where:

ss is the step size related to the scales of the problem,
used to avoid Levy-flight jumping out of the search space
(for our use case, ss = 0.001)
⊗ is entry-wise multiplications,
Levy(S) is a set of Levy step lengths in a D-dimensional 
space.

ISLO improves both the exploitation and exploration phases 
of SLO by taking into account the combination of the MHM 
of individuals and LFT for the exploration phase and using 
the OBL operation and LFT for the exploitation phase. 
These improvements (MHM, LFT, and OBL) form ISLO 
as the improved SLO optimizer. The ISLO pseudo-code is 
presented in Algorithm 2.

(14)Levy(s) ∼ |s|−1−𝛽 with 0 < 𝛽 ≤ 2

(15)s =
�

|v|1∕�

(16)� ∼ N(0, �2

�
)

(17)v ∼ N(0, �2

v
)

(18)�� =

[
Γ(1 + �). sin(�.�∕2)

Γ((1 + �)∕2).�.2(�−1)∕2

]1∕�

(19)�v = 1

(20)Xg+1 = Xbest + ss Levy(S)⊗ (Xbest − Xg)
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3.2  Extreme Learning Machine (ELM)

The difference between ELM and MLP is the training algo-
rithm. ELM does not require gradient-based back propaga-
tion to work but uses a random process and Moore-Penrose 
generalized inverse to set its weights. The architecture of 
the single-hidden-layer ELM illustrated in Fig. 2—the left 
side, and the mathematical formulas for the ELM model are 
presented below. The ELM output is calculated as follows:

where:
(21)

f (x) =

L∑

i=1

�i gi(x) =

L∑

i=1

�i g(wi xj + bi) j = 1, ...,N

L is the number of hidden units,
N is the number of training samples,
g is the activation function,
x is an input vector,
w is the weight vector between the input and hidden layer,
b is the bias vector between the input and hidden layer,
� is the weight vector between the hidden and output layer
(called the hidden weight that includes both weights and 
biases).
This � is a special matrix calculated by a pseudo-inverse 
operation.

The shortening of the matrix equation can be written as 
follows.
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where:

m is the number of outputs;
H is called hidden layer output matrix;
T is the training data target matrix.

Then the optimization objective is calculated as

Because H is invertible, 𝛽  can be calculated as

After having 𝛽  , we can make a prediction on the new data. 
Finally, the ELM training process has the following steps: 

1. Randomly assign weight wi and bias bi , i = 1, ..., L

2. Calculate hidden layer output H
3. Calculate output weight matrix 𝛽 = H+T

4. Use 𝛽  to make a prediction on new data T � = H𝛽

3.3  Training ELM Model by ISLO

The strength of ELM is speed, because it requires a little 
time to learn the relation between input and output by the 
random process and then just calculates the Moore-Penrose 
inverse matrix. This is a trade-off between speed and gen-
eralization performance. Non-optimal input weights may 
be randomly chosen, and this causes bad performance. In 
order to tackle the problem, in this paper, ISLO is used to 
replace the random process to find the optimal input-weight 

(22)T =H�

(23)M =

⎡
⎢
⎢
⎢⎣

g(w1 ∗ x1 + b1) . . g(wL ∗ x1 + bL)

. .

. .

g(w1 ∗ xN + b1) g(wL ∗ xN + bL)

⎤
⎥
⎥
⎥⎦
N,L

(24)� =

⎡
⎢
⎢
⎢⎣

�T
1

.

.

�T
L

⎤
⎥
⎥
⎥⎦
L,m

(25)T =

⎡
⎢
⎢
⎢⎣

tT
1

.

.

tT
L

⎤
⎥
⎥
⎥⎦
N,m

(26)||H𝛽 − T|| = min
𝛽

||H𝛽 − T||

(27)𝛽 = H+T

for the ELM network (Fig. 2). This way forms the ISLO-
ELM model. There are two key aspects needed to be taken 
into consideration, which are the formation of an agent in 
ISLO, and the selection of fitness function. 

1. Agent formulation: each agent in the population in ISLO 
is presented as one solution for the hybrid ELM model, 
which means that a search agent is a one-dimensional 
vector created by concatenating all weights and biases 
between the input and hidden layer. Therefore, the length 
of a solution can be calculated by Eq. 28. 

 where ni, nh is the number of input and hidden neurons, 
respectively.

2. Fitness function: fitness value of each agent in ISLO 
is considered as the loss value of the ELM model with 
the set of parameters of the agent and the input data. 
The loss function Mean Square Error (MSE) is used to 
calculate the difference between the actual and predicted 
output values by the generated agent for all samples in 
the training set.

The ISLO workflow applied in this work to train ELM is 
depicted in Fig. 3, and can generally be presented by the 
following steps: 

1. Initialization: pre-defined the number of search agents 
in ISLO. Each set of input weights of the hybrid ELM 
model is encoded to a vector that plays a role as an agent 
in the ISLO population. (Fig. 2)

2. Calculate fitness value for each search agent: A solution 
is decoded into the input weight of the network. Calcu-
late the hidden weight of the network by Moore-Penrose 
inverse matrices based on training data. Data samples in 
the validation set are then feed-forwarded through the 
network, generating predicted output values. Finally, the 
fitness value is calculated as the difference between the 
predicted output and the ground truth value using the 
MSE loss function.

3. Find the global best solution based on fitness value
4. Loop through maximum number of iterations
5. Update position of each agent by ISLO formulas
6. Re-calculate the fitness value and update the global best 

solution
7. Repeat step 4 and step 6 until the difference is small 

(close) enough or the maximum number of generations 
is reached.

8. Return the best input-weight set of ELM model.

(28)size(solution) = (1 + ni) nh
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4  Experiments

The ISLO optimization capability is tested by two folds: 
with benchmark functions (theoretical experiments) and 
with real datasets (practical experiments).

• For the theoretical experiments, 20 benchmark functions 
are used. This set of benchmark functions covers a wide 
range of functional groups, including classical unimodal 
and multimodal functions, hybrid functions, and compo-

sition functions taken from the special session of CEC 
2014 and CEC 2015 [4, 5]. ISLO is compared with other 
algorithms in all four groups of meta-heuristic optimiza-
tion include evolutionary, swarm-based, physical-based, 
and human-based algorithms.

• For practical experiments, the ISLO-ELM hybrid model 
is proposed, where ISLO is used to optimize ELM. Dif-
ferent real public datasets are used: the Google trace 
dataset (CPU and RAM), Internet traffic from the UK, 
and EU countries. ISLO-ELM is compared with classic 

Fig. 4  Examples of 3D plot for some of benchmark functions
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models such as MLP, FLNN, CFNN, and ELM. It was 
also compared with other hybrid models (OTWO-ELM 
and SLO-ELM) to demonstrate the capability of ISLO in 
optimization.

4.1  Theoretical Experiments

4.1.1  Benchmark Functions

The performance of ISLO has theoretically experimented 
with 20 benchmark functions in 4 groups:

• Unimodal functions that have only one global optimal 
point in the search space.

• Multimodal functions that have one global optimal point 
along with several local minimums.

• Hybrid functions: variables are randomly divided into 
some sub-components and then different basic unimodal 
and multimodal functions are used for different sub-com-
ponents.

• Composition functions, which merge the properties of the 
sub-functions better and maintains continuity around the 
global/local optima.

A brief introduction about the function name, formula, 
search space, and optimal value of each function is shown in 
Table 1. More details about the formula and characteristics 
are in [4] and [5]. The 3D plots of several benchmark func-
tions are presented in Fig. 4.

4.1.2  Model Comparison

The ISLO results with 20 benchmark functions are com-
pared with eight other algorithms. To be fair in the com-
parison experiment, all algorithms are set with the same 
number of search agents (population size ps = 50) and the 
same number of maximum generations ( gmax = 1000). The 
number of dimensions for each function is 30 dimensions. 
The specific parameter for each algorithm is selected on the 
basis of the original paper and combined with the trial-and-
error method in advance. The optimal parameter for each 
algorithm can be found below:

• For GA [63], the crossover probability pc = 0.9 and the 
mutation probability pm = 0.025

• For SAP-DE, weighting factor wf = 0.8 , crossover prob-
ability cr = 0.9 , F factor F = 1.0.

Table 1  Description of benchmark functions

Type Mathematical definition Range fmin

Unimodal f
1
(x) =

∑n

i=1
i ∗ x2

i
[− 100, 100] 0

f
2
(x) =

∑n

i=1
x2
i
+ (

1

2
∗
∑n

i=1
i ∗ xi)

2 + (
1

2
∗
∑n

i=1
i ∗ xi)

4 [− 100, 100] 0

f
3
(x) =

∑n

i=1
�xi� +

∏n

i=1
�xi� [− 100, 100] 0

f
4
(x) = (x

1
− 1)2 +

∑n

i=2
i ∗ (2x2

i
− xi−1)

2 [− 100, 100] 0

f
5
(x) =

∑n−1

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] [− 100, 100] 0

Multimodal
f
6
(x) = −a.exp(−b

�
1

n

∑n

i=1
x2
i
) + a + exp(1) − exp(

1

n

∑n

i=1
cos(cxi)) with a = 20 

and b = 0.2

[− 100, 100] 0

f
7
(x) =

��
��x��2 − n

�2��
+

1

n

�
1

2
��x��2 +

∑n

i=1
xi

�
+

1

2

[− 100, 100] 0

f
8
(x) = 10D +

∑n

i=1
(x2

i
− 10 ∗ cos(2� ∗ xi)) [− 100, 100] 0

f
9
(x) =

∑n

i=1

∑5

j=1
jsin((j + 1)xi + j) [− 100, 100] 0

f
10
(x) = 1 − cos(2�

�∑D

i=1
x2
i
) + 0.1

�∑D

i=1
x2
i

[− 100, 100] 0

Hybrid f
11

 (function 17 in CEC 2014) [− 100, 100] 1700
f
12

 (function 18 in CEC 2014) [− 100, 100] 1800
f
13

 (function 20 in CEC 2014) [− 100, 100] 2000
f
14

 (function 6 in CEC 2014) [− 100, 100] 600
f
15

 (function 8 in CEC 2014) [− 100, 100] 800
Composition f

16
 (function 9 in CEC 2015) [− 100, 100] 900

f
17

 (function 10 in CEC 2015) [− 100, 100] 100
f
18

 (function 12 in CEC 2015) [− 100, 100] 1200
f
19

 (function 14 in CEC 2015) [− 100, 100] 1400
f
20

 (function 15 in CEC 2015) [− 100, 100] 1500
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• For PSO [64], the cognitive learning rates c1 = c2 = 2.05 , 
and the inertia factor w are set linearly and reduce from 
0.9 to 0.4 over the course of iteration.

• For HGS, the probability of updating position L = 0.08 
and the highest hunger LH = 10000.

• For CHIO, the basic reproduction rate brr = 0.06 and the 
maximum age of infected cases max_age = 150.

• For SLO and ISLO, hyper-parameters are set as described 
in the original paper [3].

4.1.3  Measurement Methods and Parameters Settings

The experimental results of each model are produced by 
calculating the mean (Eq. 29) and standard deviation std 
(Eq. 30) of 50 times running with the algorithms and func-
tions mentioned above.

where:

i = 1, 2, ...,N

N is the size of the observation population;
ri are observations;
� is the population mean.

For each function, after calculating the values of mean and 
std of each algorithm, the best algorithm will be denoted by 
1st ranked and determined by the following rules: 

1. The mean values are considered. If an algorithm has the 
best value mean, it will be ranked as the best optimizer 
( 1st ranked).

2. In the case where two or more algorithms have the same 
mean value, the one that has the most stable std value 
will be chosen as the best.

3. The mean ranking for each type of benchmark function 
(unimodal, multimodal, hybrid and composition) is cal-
culated to illustrate which algorithm performed best in 
each set of functions.

  For example, unimodal has 5 functions f1 to f5 , then 
the mean ranking of the ISLO algorithm in the unimodal 
set is calculated as 

(29)mean =
1

N

N∑

i=1

xi

(30)std =

√√√√ 1

N

n∑

i=1

(xi − �)2

(31)
(
rank

f1
ISLO

+ ... + rank
f5
ISLO

)
∕5

4.2  Practical Experiments

For the practical problem, our proposed ISLO-ELM model 
is utilized to solve time series forecasting on the cloud com-
puting platform. Four datasets are used including CPU and 
RAM from Google trace cluster, Internet traffic from the 
UK, and EU countries.

The results of the proposed model ISLO-ELM are com-
pared with classic models such as MLP, CFNN, FLNN and 
the original ELM. The optimizing capability of ISLO on 
ELM is also validated against hybrids OTWO (OTWO-
ELM) and SLO (SLO-ELM).

4.2.1  Datasets

• Google cluster trace dataset: The most important data-
set in our experiments is gathered by Google on a clus-
ter of about 12500 machines [65] for 29 days, starting 
from May 2011. Resources requirements and usage 
data for each job are recorded by each machine in the 
cluster, and then the data is managed by the cluster’s 
management system. In the Google Trace dataset, two 
extremely important columns contain information of 
the central processing unit (CPU) and random access 
memory (RAM) required for each job. For that reason, 
we decide to choose these two data types as two time-
series datasets (called Google Trace CPU and Google 
Trace RAM from here). The datasets are processed 
and summarized in the 5-minute interval, containing 
8351 data points, and considered as the total demand 
for resources in the whole Google cluster.

• Internet traffic from the EU and EU countries: These 
two sets of data, which are used for experiments in 
[66], are recorded by two different ISPs. The EU Inter-
net Traffic dataset comes from a private ISP playing 
a role as a reporter with centers in 11 European cit-
ies. The data correspond to a transatlantic link and 
were collected from 06:57 hours on 7 June to 11:17 
hours on 29 July 2005. The UK Internet Traffic rep-
resents aggregated traffic in the United Kingdom’s 
academic network backbone. It was reported between 
19 November 2004, at 09:30 hours and 27 January 
2005, at 11:11 hours. Both two datasets are processed 
and summarized every 5 minutes, creating EU Inter-
net Traffic (14773 records) and UK Internet Traffic 
(19989 records) as the input in our experiments.

The feature engineering goes thought transformation raw 
logs into time-series data [67]. After that, missing values are 
checked. The smooth sliding transformation is an operation 
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that helps to remove short-term variations in order to reveal 
long-term trends is done by seasonal-trend decomposition 
using locally estimated scatterplot smoothing (STL). The 
cleaned data are also checked against white noise, random-
ness and unit root with the augmented Dickey-Fuller (ADF) 
test.

The characteristics of time-series data are ordered time-
dependency sequences. There is a temporal dependency 
between observations that must be preserved during testing 
and validation. The method used for cross-validating in this 
work is built on a rolling basis known as the Time-Series-
Split approach in machine learning. In our experiments, the 
size of the sliding windows is not changed, i.e. rolling basis 
with fixed window’s size and fixed split ratio (70:15:15) for 
train, test, and validation data.

4.2.2  Parameter Setting and Evaluation Metrics

As mentioned above, ISLO-ELM’s performance is com-
pared with five classic models: MLP, CFNN, FLNN, ELM, 
and three hybrid-ELM models: OTWO-ELM, SLO-ELM, 
ISLO-ELM. The hyper-parameter settings for each model 
are described below:

• MLP, CFNN, ELM, and hybrid-ELM settings with the 
same architectures include one input layer, one hidden 
layer, and one output layer. The input size for all models 
is based on the feature engineering for each dataset.

• FLNN with single input and output layer, the expansion 
function is selected by the trial method as mentioned in 
[6].

Table 2  Comparison of optimization results obtained for unimodal functions (f1–f5) and multimodal functions (f6–f10)

Function GA SAP-DE HI-WOA COA HGS M-LCO CHIO SLO ISLO

f1 Mean 2.13E-08 1.21E-04 0.00E+00 1.51E-03 0.00E+00 0.00E+00 2.69E-02 0.00E+00 0.00E+00
Std 3.53E-08 2.15E-04 0.00E+00 6.32E-03 0.00E+00 0.00E+00 3.59E-02 0.00E+00 0.00E+00
Rank 6 7 3 8 3 3 9 3 3

f2 Mean 2.71E+03 2.56E+04 8.88E+04 8.60E+04 0.00E+00 0.00E+00 8.06E+04 2.60E+04 0.00E+00
Std 4.22E+02 2.15E+04 1.70E+04 2.42E+04 0.00E+00 0.00E+00 1.37E+04 1.23E+04 0.00E+00
Rank 4 5 9 8 2 2 7 6 2

f3 Mean 1.24E+13 3.75E+15 2.23E-127 1.94E+01 0.00E+00 0.00E+00 5.11E+19 8.73E-49 0.00E+00
Std 2.67E+13 1.62E+16 6.11E-127 1.01E+01 0.00E+00 0.00E+00 1.46E+20 2.55E-48 0.00E+00
Rank 7 8 4 6 2 2 9 5 2

f4 Mean 4.67E+06 3.59E+06 6.67E-01 4.37E+06 6.67E-01 9.80E-01 5.81E+09 6.70E-01 6.67E-01
Std 1.41E+06 8.21E+06 7.14E-06 3.78E+06 1.43E-03 9.92E-03 2.14E+09 7.96E-03 5.42E-06
Rank 8 6 1 7 3 5 9 4 2

f5 Mean 8.30E+06 1.71E+07 2.63E+01 2.62E+07 2.77E+01 2.89E+01 1.22E+10 2.85E+01 2.75E+01
Std 2.81E+06 4.93E+07 8.71E-01 2.86E+07 2.45E-01 3.44E-02 3.79E+09 1.71E-01 4.07E-01
Rank 6 7 1 8 3 5 9 4 2

f6 Mean 8.5E+00 1.0E+01 1.3E-15 2.0E+01 4.4E-16 1.1E+00 2.0E+01 1.8E+01 4.4E-16
Std 5.2E-01 7.0E+00 2.0E-15 6.3E-04 0.0E+00 4.7E+00 6.5E-03 6.3E+00 0.0E+00
Rank 5 6 3 8 1.5 4 9 7 1.5

f7 Mean 1.2E+00 1.3E+00 6.3E-04 1.0E+00 0.0E+00 0.0E+00 1.2E+01 3.2E-03 0.0E+00
Std 2.7E-02 4.1E-01 2.8E-03 7.6E-02 0.0E+00 0.0E+00 8.5E-01 1.4E-02 0.0E+00
Rank 7 8 4 6 2 2 9 5 2

f8 Mean 1.0E+03 1.5E+03 3.7E+01 6.9E+02 0.0E+00 8.4E+00 4.5E+04 0.0E+00 0.0E+00
Std 1.2E+02 1.7E+03 5.4E+01 2.8E+02 0.0E+00 3.8E+01 6.0E+03 0.0E+00 0.0E+00
Rank 7 8 5 6 2 4 9 2 2

f9 Mean 9.3E+00 9.8E+00 6.1E+00 4.5E+00 0.0E+00 6.0E+00 1.2E+01 1.1E+00 0.0E+00
Std 3.3E-01 1.8E+00 5.1E+00 7.3E-01 0.0E+00 2.4E+00 3.1E-01 3.1E+00 0.0E+00
Rank 7 8 6 4 1.5 5 9 3 1.5

f10 Mean 2.6E+00 1.9E+00 2.3E-01 6.2E+00 0.0E+00 8.0E-02 2.4E+01 6.5E-02 0.0E+00
Std 2.0E-01 1.6E+00 1.2E-01 1.2E+00 0.0E+00 4.1E-02 7.7E-01 5.9E-02 0.0E+00
Rank 7 6 5 8 1.5 4 9 3 1.5
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H(P) is the entropy of P.

5  Results and Discussion

5.1  Benchmark Functions Results

5.1.1  Unimodal and Multimodal Functions Results

The functions f1 – f10 are unimodal and multimodal func-
tions. These kinds of function are selected after a couple of 
testing purposes. In particular, unimodal functions allow us 
to evaluate the exploitation performance of meta-heuristic 
optimizers since they only have one global optimal mini-
mum; multimodal functions help us see algorithms’ explora-
tion performance with several local minimum points, which 
exponentially increases following the increase in search 
space dimension.

In general, it can be seen from Table 2 that ISLO shows 
the best performance among all algorithms chosen in most 
test cases except f4 and f5 . Furthermore, while optimizing 
several functions, ISLO can reach optimal value with decent 
stability.

Accuracy and the stability
From the obtained results of unimodal and multimodal 

functions in Table  2, it could be made the following 
observations:

• ISLO achieves the best results in all test cases except 
f4 and f5 . For example, in experiments with unimodal 
function f1- f5 , ISLO can reach the global optimal, as well 
as SLO, M-LCO, and HI-WOA models in the f1 func-
tion. ISLO, M-LCO, and HGS find the global optimal 
for the functions f2 and f3. ISLO is ranked 2nd in f4, 
f5, and the difference between the results of the ranked 
1st (HI-WOA) and ISLO is not significant. In particular, 
our improvement makes ISLO outperforms SLO in all 
test cases. It proves that compared to the original SLO, 
ISLO’s exploitation ability is significantly enhanced. 
The results with unimodal functions indicate that ISLO 
could lead the population to the global optimal position. 
Furthermore, in addition to the best results in terms of 
accuracy, ISLO also shows extreme stabilization since 
the standard deviation values are 0 in all three cases.

• The results for multimodal functions f6– f10 indicate that 
ISLO also has superior exploration ability. ISLO ranks 
1st in 5 of 5 functions, and with four functions f7 − f10 , 
ISLO reaches the globally optimal values of the func-
tions, accompanied by relatively small standard devia-
tion values. Notably, ISLO’s results outperform SLO’s 
results in both terms of accuracy and stability (except 

• The number of epoch in NN models is set to 1000. The 
maximum number of generations in metaheuristic algo-
rithms is also set to 1000. This setting is sufficient for all 
algorithms to converge to their final results.

In the training phase of general network, mean squared 
error (MSE) is used as the loss function. In the testing 
phase, mean absolute error (MAE), root mean squared 
error (RMSE), mean absolute percentage error (MAPE), 
ackge, Kullback-Leibler divergence (KLD) [68] are used as 
measurements for comparison. The Kling-Gupta efficiency 
(KGE) [69] combines the three components of Nash-Sut-
cliffe efficiency (NSE) of model errors (i.e. correlation, bias, 
ratio of variances or coefficients of variation) in a more bal-
anced way. It has value range from −Inf  to 1. Essentially, the 
closer to 1, the more accurate the model is. The KLD [70] is 
used to measure how much a given arbitrary distribution is 
away from the true distribution. If two distributions perfectly 
match, KLD(P||Q) = 0 otherwise it can take values between 
0 and ∞ . Lower the KLD value, the better matched the true 
distribution with our approximation. The mathematical form 
of these metrics are as follows.

where:

yi are observed value,
ŷi are predicted value,
r is correlation coefficient,
� 𝛽 =

𝜇ŷ

𝜇y

 is bias ratio,

� 𝛾 =
CVŷ

CVy

=
𝜎ŷ∕𝜇ŷ

𝜎y∕𝜇y

 is variability ratio,

CV is coefficient of variation,
� is mean,
� is standard deviation,
H(P, Q) is the cross entropy of P and Q

(32)MSE =
1

n

n∑

i=1

(yi − ŷi)
2

(33)RMSE =
√
MSE

(34)MAE =
1

n

n∑

i=1

|yi − ŷi|

(35)MAPE =
1

n

n∑

i=1

||||
yi − ŷi

yi

||||

(36)KGE =1 −
√
(r − 1)2 + (� − 1)2 + (� − 1)2

(37)

KLD(P||Q) = −
∑

x∈X

P(x)logQ(x) +
∑

x∈X

P(x)logP(x) = H(P,Q) − H(P)
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function f7, SLO attains the same 1st ranking as ISLO). 
It is a proof that the exploration ability is significantly 
improved.

• We also visualize the mean ranking of all algorithms in 
unimodal and multimodal functions in Fig. 6. ISLO is 

ranked as the best optimizer for both types of benchmark 
functions (2.2 for unimodal functions and 1.7 for multi-
modal functions).

(a) Unimodal (b) Multimodal

Fig. 5  Convergence speed of each algorithm on unimodal (a-left side) and multimodal (b-right side) functions
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Convergence characteristic
The convergence curves in Fig. 5 show that with unimodal 

and multimodal functions, most algorithms can converge at 
the exact or near the global optimal point. Especially with 
unimodal functions such as f1 and f3 . Our proposed model 
ISLO starts to converge very fast right after a few iterations. 
As can be seen, the results from ISLO are far better than 
the original SLO in all cases, proving that exploitation and 
exploration capacities in SLO are considerably enhanced.

5.1.2  Hybrid and Composition Functions Results

The functions f11– f20 are hybrid and composition func-
tions. In hybrid functions ( f11– f15 , the variables are ran-
domly divided into sub-components which play a role as 
input for different basic functions including both unimodal 
and multimodal functions. To work well on these functions, 

algorithms are required an extreme balance between exploi-
tation and exploration phases, because hybrid functions are 
both unimodal and multimodal, and they own different prop-
erties for different variables sub-components. On the other 
hand, optimization of composite mathematical functions ( f16
– f20 ) is a very challenging task, because local optima are 
only avoided by a proper balance between exploitation and 
exploration.

In general, Table 3 shows that ISLO achieves competi-
tive results performance overall hybrid and composition 
functions. ISLO results rank first in several cases such as 
f11, f12, f16 and f19 . Also, as is observed in Fig. 7, ISLO’s 
convergence curves are similar to those in unimodal and 
multimodal functions, and ISLO still has a very fast conver-
gence after the first half of iteration because of its updating 
mechanism.

The accuracy and the stability
The following comments are drawn from Table 3.

Table 3  Comparison of the optimization results obtained for hybrid functions (f11–f15) and composition functions (f16–f20)

Function GA SAP-DE HI-WOA COA HGS M-LCO CHIO SLO ISLO

f11 Mean 7.88E+06 3.28E+07 4.78E+06 1.39E+07 1.22E+07 1.18E+07 9.22E+06 3.53E+06 2.16E+06
Std 2.91E+06 2.18E+07 2.53E+06 1.41E+07 9.90E+06 1.06E+07 3.79E+06 1.98E+06 1.58E+06
Rank 4 9 3 8 7 6 5 2 1

f12 Mean 2.43E+08 3.09E+09 4.22E+07 6.65E+06 1.10E+08 4.34E+08 2.24E+08 4.95E+06 5.61E+05
std 8.04E+07 1.79E+09 1.03E+08 1.66E+07 1.74E+08 2.78E+08 2.18E+08 2.18E+07 1.53E+06
Rank 7 9 4 3 5 8 6 2 1

f13 Mean 6.39E+12 1.30E+05 1.83E+14 1.25E+07 8.28E+11 1.32E+12 5.23E+12 7.55E+08 1.62E+05
Std 3.71E+12 3.59E+04 2.87E+14 5.23E+07 1.58E+12 2.02E+12 1.18E+13 2.85E+09 7.15E+04
Rank 8 1 9 3 5 6 7 4 2

f14 Mean 6.293E+02 6.431E+02 6.405E+02 6.258E+02 6.418E+02 6.401E+02 6.228E+02 6.353E+02 6.341E+02
Std 1.214E+00 1.826E+00 2.064E+00 3.218E+00 1.896E+00 2.601E+00 1.262E+00 2.750E+00 2.892E+00
Rank 3 9 7 2 8 6 1 5 4

f15 Mean 1.028E+03 1.018E+03 1.089E+03 9.867E+02 1.143E+03 1.127E+03 1.276E+03 1.227E+03 1.106E+03
Std 1.395E+01 4.438E+01 7.539E+01 4.116E+01 3.242E+01 3.788E+01 4.634E+01 3.156E+01 3.189E+01
Rank 3 2 4 1 7 6 9 8 5

f16 Mean 9.132E+02 9.136E+02 9.134E+02 9.136E+02 9.136E+02 9.133E+02 9.132E+02 9.130E+02 9.129E+02
Std 1.328E-01 2.035E-01 3.438E-01 2.409E-01 2.430E-01 3.812E-01 2.358E-01 3.391E-01 3.592E-01
Rank 4 7 6 9 8 5 3 2 1

f17 Mean 3.99E+07 8.11E+07 3.76E+06 6.52E+06 5.87E+07 5.35E+07 6.55E+06 3.16E+07 2.80E+07
Std 4.57E+06 3.05E+07 3.25E+06 5.13E+06 2.49E+07 3.49E+07 2.86E+06 1.43E+07 1.24E+07
Rank 6 9 1 2 8 7 3 5 4

f18 Mean 3.29E+11 7.81E+13 9.19E+03 2.69E+09 1.21E+13 1.46E+11 1.10E+04 1.04E+10 1.11E+04
Std 4.73E+11 1.76E+14 3.55E+03 1.20E+10 4.41E+13 2.80E+11 3.74E+03 3.42E+10 3.81E+03
Rank 7 9 1 4 8 6 2 5 3

f19 Mean 9.06E+03 7.06E+03 4.74E+03 2.11E+03 4.30E+03 2.87E+03 4.82E+03 6.87E+03 1.73E+03
Std 3.51E+02 2.48E+03 1.52E+03 1.26E+02 1.16E+03 6.53E+02 1.20E+03 1.60E+03 3.78E+01
Rank 9 8 5 2 4 3 6 7 1

f20 Mean 3.018E+03 2.951E+03 2.829E+03 2.745E+03 3.044E+03 2.800E+03 2.331E+03 2.911E+03 2.839E+03
Std 3.659E+01 7.323E+01 6.992E+01 2.421E+02 4.993E+01 5.779E+01 1.579E+02 4.414E+01 6.245E+01
Rank 8 7 4 2 9 3 1 6 5
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• Evidently that ISLO works well for hybrid functions ( f11
– f15 ). In particular, it shows superior results for func-
tions f11 and f12 compared to state-of-the-art algorithms 
such as HI-WOA and HGS. In the case of the function 
f13 , although ISLO does not account for the first place, 
it is still very competitive when its result is only worse 
than SAP-DE. Even in the case of functions f14 and f15 , 
ISLO’s results are still better than SLO’s results, proving 
a decent balance between the exploitation and explora-
tion phases, especially when compared with the original 
SLO algorithm.

• For composition functions ( f16– f20 ), ISLO perfor-
mance presents competitive results to other models. 
ISLO ranked 1st place when solving functions f116 and 
f19 . Specifically, in function f18 there is no big differ-
ences between ISLO’results and the best one HI-WOA 

and the second best CHIO. Furthermore, the results of 
ISLO again outperform the results of SLO in all cases. 
It proved that our improvement makes ISLO better than 
traditional one.

• ISLO ranking (Fig. 6) is not at the 1st place in most cases 
(3/5). But overall ranking (mean ranking) shows that 
ISLO is the best optimizer on both benchmark function 
types (2.6 in hybrid functions and 2.8 in composition 
functions).

The convergence speed
The convergence speed of all algorithms that work on 

hybrid and composition functions is shown in Fig. 7. Since 
these functions are difficult to converge on, only powerful 
and efficient algorithms can converge to the optimal point. 

Fig. 6  Visualization of mean ranking on unimodal, multimodal, hybrid, and composition functions of compared algorithms
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Therefore, we can observe which algorithm works and which 
algorithm does not work in these figures.

It is clear that ISLO always considerably improves its best 
global fitness values in the second half of the iterations. The 
reason is that in the first half of the iterations, ISLO is in its 

exploration phase (since the value of C during that time is 
always greater than 1, see Algorithm 2). After changing to 
the exploitation phase, ISLO can exploit and converge to 
the global minimum quickly, providing better results than 
the others.

(a) Hybrid (b) Composition

Fig. 7  Convergence speed of each algorithm on hybrid (a-left side) and composition (b-right side) functions
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Table 4  Comparison among 
models on each dataset by 
different measurements

The best value of each metric on each dataset is highlighted (as bold values)

Dataset Model MAE RMSE MAPE KGE KLD

Google Trace CPU MLP 0.075 0.099 0.089 0.843 2.525
CFNN 0.080 0.103 0.095 0.847 2.311
FLNN 0.132 0.159 0.170 0.700 3.693
ELM 0.090 0.119 0.111 0.753 2.508
OTWO-ELM 0.127 0.166 0.158 0.585 2.360
SLO-ELM 0.113 0.150 0.138 0.662 2.552
ISLO-ELM 0.080 0.105 0.098 0.755 2.361

Google Trace RAM MLP 0.014 0.016 0.070 0.866 2.804
CFNN 0.008 0.010 0.039 0.886 1.876
FLNN 0.010 0.013 0.048 0.906 1.809
ELM 0.009 0.013 0.045 0.834 1.897
OTWO-ELM 0.011 0.015 0.052 0.850 1.835
SLO-ELM 0.009 0.012 0.043 0.883 1.622
ISLO-ELM 0.009 0.013 0.041 0.883 1.599

EU Internet Traffic MLP 4.793 7.680 0.014 0.994 4.698
CFNN 4.848 7.340 0.014 0.993 4.865
FLNN 5.381 7.649 0.016 0.987 4.617
ELM 6.135 9.208 0.017 0.993 4.506
OTWO-ELM 6.434 9.470 0.018 0.995 4.593
SLO-ELM 5.295 7.859 0.014 0.990 4.515
ISLO-ELM 4.751 7.340 0.013 0.995 4.703

UK Internet Traffic MLP 4.635 8.234 0.009 0.995 4.817
CFNN 4.777 8.321 0.009 0.996 4.899
FLNN 4.971 8.648 0.010 0.994 4.996
ELM 4.754 8.589 0.010 0.993 4.918
OTWO-ELM 4.852 8.543 0.010 0.988 4.902
SLO-ELM 4.810 8.441 0.010 0.993 4.755
ISLO-ELM 4.549 8.142 0.009 0.993 4.774

Fig. 8  Prediction results of SLO-ELM and our ISLO-ELM on Google trace CPU data
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5.2  Practical Test Results

Table 4 presents the results of all models in each dataset 
evaluated by MAE, RMSE, MAPE, KGE and KLD meas-
urements. Figure 8 illustrates the comparison between the 
predicted output and the ground truth of the models for the 
Google trace CPU dataset. Figure 9 shows the performance 
of different optimizers, including OTWO, SLO, ISLO and 
the original ELM of the Google trace RAM dataset (Figs. 10 
and 11). In general, our proposed ISLO-ELM model is very 
competitive in working on all datasets with most metrics 
such as MAE, RMSE, MAPE, and KLD metrics metrics. 
Especially, it works well for the Internet traffic EU and UK 
datasets.

• For the Google trace CPU dataset, MLP shows the best 
results with MAE, RMSE and MAPE (3/5 metrics). Of 
the hybrid models, only OTWO-ELM shows the best 
result with KGE. Although ISLO-ELM belongs to the 
better ones, its improvements for SLO are significant.

• For the Google trace RAM dataset, CFNN shows the 
best performance when it reaches the best results on 3/5 
metrics MAE, RMSE and MAPE. ISLO-ELM achieves 
the best results only on the KLD. The improved operators 
used in the ISLO algorithm are also efficient compared 
to the traditional SLO for this data set.

• For the EU Internet traffic dataset, ISLO-ELM shows the 
best results with MAE, RMSE, MAPE (3/5 metrics).

Fig. 9  Prediction results of MLP and our ISLO-ELM model on Google trace RAM data

Fig. 10  Prediction results of OTWO-ELM and our ISLO-ELM model on the UK Internet traffic data
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• For the UK Internet traffic dataset, ISLO-ELM shows 
the best results with MAE, RMSE, MAPE and KGE (4/5 
metrics).

6  Conclusion and Future Works

In this paper, we proposed an improved version of Sea Lion 
Optimization which is based on the historical movement of 
sea lions in combination with the levy flight trajectory and 
the idea of the opposition-based learning method, forming 
an Improved Sea Lion Optimization (ISLO). The effective-
ness of ISLO is proved by both theoretical and practical 
experiments.

In theoretical tests, 20 benchmark functions are used, 
and the ISLO’s results are compared with eight recent 
metaheuristic algorithms. In practical experiments, four dif-
ferent real and public datasets are used. The results of the 
proposed ISLO-ELM are better than traditional models and 
hybrid models in most cases, especially with Internet traffic 
datasets. The results in both tests show that the proposed 
ISLO outperforms the original SLO algorithm in balancing 
the exploration and exploitation phase, also in finding global 
optima. The hybrid ISLO-ELM is also better than several 
traditional and hybrid models in optimizing neural networks 
with real-world applications.

In the future, the auto-scaling module is planned to be 
used in decentralized systems. The autoscaling system 
includes two main components: the forecasting module 
and the decision-making module. The forecasting module 

will use designed models such as ISLO-ELM to predict the 
incoming values. Meanwhile, the decision-making module 
takes the information from the forecasting module and gives 
the final decision on the resource. In such systems, data cura-
tion is also very important to monitor covariate shift, which 
can degrade model performance.
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