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Federated learning is a data decentralization privacy-preserving technique used to perform machine or
deep learning in a secure way. In this paper we present theoretical aspects about federated learning, such
as the presentation of an aggregation operator, different types of federated learning, and issues to be
taken into account in relation to the distribution of data from the clients, together with the exhaustive
analysis of a use case where the number of clients varies. Specifically, a use case of medical image anal-
ysis is proposed, using chest X-ray images obtained from an open data repository. In addition to the
advantages related to privacy, improvements in predictions (in terms of accuracy, loss and area under
the curve) and reduction of execution times will be studied with respect to the classical case (the central-
ized approach). Different clients will be simulated from the training data, selected in an unbalanced man-
ner. The results of considering three or ten clients are exposed and compared between them and against
the centralized case. Two different problems related to intermittent clients are discussed, together with
two approaches to be followed for each of them. Specifically, this type of problems may occur because in
a real scenario some clients may leave the training, and others enter it, and on the other hand because of
client technical or connectivity problems. Finally, improvements and future work in the field are
proposed.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recently, digitization and globalization have led companies and
institutions of many different kinds to collect a vast amount of
data. This can range from industrial and banking data to medical
data. The large volume of information collected on a daily basis
requires thorough analysis in order to infer new knowledge or
make predictions, which has led to many advances in machine
learning and deep learning techniques. However, the great value
of such information also implies an imperative need to ensure
the security and privacy of the analyzed data. The need to protect
data privacy is in many cases a mandate of regulatory require-
ments (e.g., GDPR) [1].

The classic approach of applying machine learning to decentral-
ized data (i.e. with several data owners) in a centralized way con-
sist of sending the data from each and every one of the clients or
data owners to a central server, training the model that returns
the prediction, and then sending the prediction back to the corre-
sponding client in each case.
This very first approach poses several disadvantages. The first
and foremost is related with the security properties of the data
itself: data must be sent from the data owners to the central server
and therefore it can be intercepted. In addition to this, transferring
those data require a network connection with enough bandwidth
(when the data are large) and low latency (to return back the pre-
dictions in time).

One solution to some of these problems would be to collect all
the initial data from the different clients, then the machine learn-
ing models are trained with this data, and finally a copy of the
model is sent to each of the clients. In this case, the information
does not have to travel every time new data is available, since
the model is in the possession of each data owner. Compared to
the classical approach, it has two essential advantages: the latency
problem is eliminated (predictions are performed at the client),
and the network dependence is reduced. However, the information
still has to leave each client and travel to the central server for the
initial training phase (or for any subsequent retraining).

In this case, even if we reduce the network dependency, data
has to travel from the clients to the central server. As already
mentioned, this presents a problem from the security point of view
(i.e. sensitive data that can be intercepted, or data with privacy
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restrictions) but also from the technical point of view if large
amounts of data are to be transferred, but also if the network qual-
ity is low (like in Internet of Things devices or in Edge computing
cases).

Federated learning (FL) is on the rise [2] and comes handy when
we are interested in ensuring that data does not leave the servers
of each data owner, even for training purposes; or when due to pri-
vacy concerns about sensitive data, it is not feasible to collect all
local data in the server’s data center and perform centralized train-
ing. The main idea behind FL is to analyze data in a decentralized
way, ensuring that user data will never be sent to central servers.
This technique does not seek the security of the data through its
anonymisation, but it seeks to achieve the analysis of the data
without them leaving the device or the center that generates them.

Suppose we have two data owners that cannot share their data
with each other, for example, two hospitals. However, they both
want to do research in the same area, so collaboration between
them is essential. Let us also suppose that in their research they
need to use machine or deep learning models, for which there will
be a mediator (the server) between them that will create and
choose such models (for example, neural networks) to obtain
insights from their data. A concrete example can be found in the
case of medical imaging research. Here federated learning can be
applied in the following way: Hospital 1 receives from the server
the the model to be trained using its data. Once it has done so, it
sends back to the server the weights obtained after the training.
Hospital 2 does the same tasks. With the weights obtained in each
case, the server calculates some new aggregated weights. Once
these new aggregated weights are available, they are sent back
to both hospitals, which re-evaluate the model with these weights
with their data. This process is repeated as many times as needed.

In this paper we will study the applicability of a federated learn-
ing schema and the performance obtained when varying the num-
ber of clients. Also two problems related to intermittent clients are
analyzed, together with two possible approaches to be considered
in each of them. In order to do so, we will implement a simple fed-
erated learning system that we will apply to a use case of medical
image data. The idea of presenting this medical imaging use case
arises from the motivation that it could be applied to a real case
where different hospitals or research centers have patient data that
cannot be shared among them, but could be key to improve their
research results. By using an federated learning scheme, they could
collaborate without sharing their data (which could contain sensi-
tive information from different patients) either among themselves
or with a central server, thus facilitating collaboration in several
research areas. Prior to this analysis, we present federated learning
Fig. 1. Diagram of the machine learning centralized approach.
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background to serve as a basis for introducing into this field. The
remainder of this work is structured as follows: In Section 2 we
will introduce the federated learning technique and describe its
main aspects, together with communication issues, types of Feder-
ated Learning, foundations on the aggregation functions among
other issues. In Section 3 we present the related work in this area.
Afterwards, in Section 4 we study the implementation and use of a
federated learning system to carry out the data analysis described
in this section, together with a comprehensive analysis of the use
case when varying the number of clients and two problems related
to intermittent clients. Finally, Section 5 draws the conclusions and
future work for this study.
2. Federated learning: background

Artificial intelligence, machine and deep learning empower a
wide range of applications (from anomaly detection to image clas-
sification or natural language processing among many others). In
order to produce such systems, large amounts of labeled data are
needed to build a robust application with an acceptable level of
accuracy. These data need to be centralized or aggregated into a
single location, in order to be able to consume it to build the model
or applications. In some cases it is difficult or impossible to obtain
a good quality and large enough dataset. This is the case of dis-
tributed datasets which cannot be centralized into a single loca-
tion, due to different reasons, such us technical limitations or
even privacy concerns.

The federated learning term (FL) was firstly introduced by
McMahan in 2017 [3] and refers to a technique that allows to build
data driven models exploiting distributed data without the need to
centrally store it. In a FL scenario, the learning task of a model is
shared across a loose federation of different users or devices (called
clients) that are coordinated by a central server. Each client is the
data owner of a local training dataset that is used to compute an
update to the current global model maintained by the server.
Therefore, client data is never uploaded to the server, and only
the updated model is shared. Federated learning brings a collabo-
rative and decentralized approach to machine and deep learning,
enabling the creation of smarter and more complete models, solv-
ing the latency problem and ensuring user privacy and has gained a
lot of interest over the last years.

In a simple cycle of a federated learning process, each of the cli-
ents trains the same model (provided by the server) with its own
data. Once the training is completed, each client transmits the
weights or parameters obtained to a central server. This server
receives the weights calculated by each client, ideally through an
encrypted channel, and aggregates them. To do this, an aggregation
function is used, which in the simplest configuration can be an
arithmetic mean. Finally, the server updates the model with the
new aggregated weights and send it back to the clients. This con-
cludes the first training cycle, which is repeated as many times
as necessary (a number of rounds Nr can be fixed).1.

The Fig. 2 shows a schematic view of federated learning. The
procedure to be followed to train the models using federated learn-
ing (see [4]) is described in what follows:

1. SERVER: creates the model to be trained locally by each client.
To do this we can use the Python libraries tensorflow, keras,
PyTorch, sklearn, etc.

2. SERVER: transmits the model to the clients.
3. CLIENT: each of them trains the model with its local data. We

will leave part of the initial data for testing, in order to test
the accuracy of the model locally on unseen data. It is also con-
venient to leave a part of the data we trained with as validation
during and after training, as in any other learning process.
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4. CLIENT: each of them sends the local parameters to the server.
Here it is important to note that in no case is raw data transmit-
ted, only the parameters that define the model. Likewise, this
must be done in an encrypted form, as information about the
data could be extracted from it.

5. SERVER: aggregates the weights of each client using an aggre-
gation operator and updates the model.

6. Repeats the process from step 2.
Fig. 2. Scheme of a federated learning approach.
There are challenging aspects of FL, when compared with a tradi-
tional ML algorithm, that exist due to the distributed nature of
the technique and can be grouped as follows [5]:

1. expensive communication,
2. systems heterogeneity,
3. statistical heterogeneity, and
4. privacy concerns.

2.1. Communication issues

Communication —both in terms of privacy and performance—
between the server and the client is the most critical point of the
process. One the one hand, each time the federated learning pro-
cess is repeated, the client sends a new update of the calculated
weights, and the difference between the updated weights and
the previous can cause information to be extracted from the initial
data. It is therefore crucial that this communication is encrypted to
ensure its privacy and security. In addition, Differential Privacy
(DP) or Homomorphic Encryption (HE) techniques can also be
applied to ensure privacy [6,7]. On the other hand, network perfor-
mance can be a bottleneck when the model updates are large,
therefore a compression or reduction of the data transferred back
to the server should be performed in order to save bandwidth or
to maximize the chances of a successful transfer when the network
quality is low. In this regard, techniques such as data compression,
dimensionality reduction or other techniques [8] are used to
implement a more efficient communication method.

In the case of classification of medical imaging that will be stud-
ied in this paper, we will not focus on the cost of communication,
since our main interest is to analyze the evolution of accuracy, loss
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and AUC as a function of the number of clients and the number of
rounds performed (and therefore we will see the variation of the
training time), as well as the study of the problem of intermittent
clients. Regardless of the computational capacity of each client (di-
rectly related to the training time), the results in terms of these
metrics will be the same. Therefore, as the analyzed use case is a
simulated example, the same CPU will be considered for the train-
ing of all clients.

2.2. Systems heterogeneity

Another important challenge, caused by the underlying systems
heterogeneity, is due to the fact that devices can be intermittent
through the learning cycle. Let us see it with a classic example of
federated learning application, the case of predictive keyboards.
It could happen that one of the nodes that is used to train the mod-
els, a smartphone, is inactive at certain moment and cannot be
used [9]. As we have briefly described in the case of hospitals, col-
laboration between different data owners can be key, as individual
data owners may not have a significant volume of data to analyze.
In relation to the case study that will be analyzed in this paper, we
can assume that different hospitals want to collaborate to classify
X-ray images, without sharing the patient’s image data. For this
task, it is proposed to apply a FL schema, but the number of clients
(hospitals) may initially be limited, and as the study progresses,
other hospitals or centers may decide to join the collaboration,
while others may decide to leave it, e.g. because no new data is
available or even for privacy concerns. In addition, due to connec-
tivity issues or problems with computing infrastructures, some
hospitals may not send their updates on time, which is another
example of intermittent clients that will be analyzed.

2.3. Non independent and identically distributed (non-i.i.d.) data vs
heterogeneous data

A very significant aspect that can affect the training process of a
federated learning scheme is the distribution of the data among the
different clients. In particular, the fact that these may be non-i.i.d.
is a point to be taken into account. Specifically, in the Horizontal FL
approach, we usually refer to non-i.i.d. data in terms of the skew of
the different labels. For example, in extreme cases where there are
clients that do not have all possible categories represented or only
have one of them, it may happen that the global model fails to con-
verge. In particular, this especially affects parametric models (e.g.
neural networks) in the case of horizontal FL. These problems
can be notably seen if it is the case that the distributions of the cli-
ents are too far away from the distribution of all the data globally.
For example, the FedAvg method, which consists of averaging the
weights (or the models obtained when training locally in each cli-
ent), is highly sensitive in the case of non-i.i.d. data [10].

However, as presented in [9], there are other approaches that
can be studied in order to analyze whether the data are non-i.i.d.
or homogeneous (again, as far as horizontal FL is concerned), not
only the distribution of the labeling of the data. Although the intu-
itive idea is to analyze how different the Pi and Pj distributions of
the labels in clients i and j are, other options that can make the data
non-homogeneous are: imbalance in the number of data (clients
with much more data than others), differences in the distribution
of the features, or the fact that very different features have the
same label.

2.4. Types of federated learning

It is important to note that there are multiple types of federated
learning [9], for example, we will start by distinguishing two vari-
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ants according to the types of clients. Firstly, Cross-Device feder-
ated learning, where the clients are devices such as, for example,
smartphones, or Cross-Silo federated learning, where the clients
are different institutions (e.g. banks, hospitals, companies. . .),
allowing for example that in the latter case the computing
resources of each of them can be more powerful and scalable.

On the other hand, two types of federated learning can also be
distinguished depending on how the data is introduced: horizontal
and vertical federated learning (also called homogeneous and
heterogeneous FL respectively).

� Horizontal federated learning. This is the most intuitive case,
and specifically the one that will be developed during the image
classification use case presented in this study. It consists of con-
sidering the data of all clients with the same features. That is,
although each client will have different data (different samples),
they will all have the same features, for example, in the case of
structured data, they will all have the same columns. Note that
this is the type of FL that will be applied in the case study of this
work.

� Vertical federated learning. In contrast to the previous case,
now the different clients have data with different characteris-
tics, but with the same identifier. That is, suppose we have
two institutions (each of them will be a client of the FL schema),
which have data from the same n users, but each of them has
information about different characteristics. Then, the data will
be vertically condensed considering the information held by
the two institutions for user i. A priori it is a less intuitive and
more complex approach, but it is very useful in many cases in
the cross-silo federated learning cases. A use example of this
Fig. 3. Example of
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case can be seen in [11]. To better understand this approach,
an example is presented in Fig. 3, assuming N clients, the first
one with n features, the second one with m, and client N with
k features. Moreover, all of them with data corresponding to
the same M IDs.

Finally, highlight the concept of gossip learning as a variant of the
classic federated learning architecture in which there is no depen-
dence on a central server. The latter is of particular interest in cases
where clients do not want to depend on a third party to carry out
the process, and have sufficient resources to carry out the process
of aggregating weights and updating the model themselves with a
consensus algorithm.

2.5. Aggregation function

When the model is trained locally by the different clients and
once the weights or parameters calculated after such training are
obtained, the server must aggregate them to update the model. Dif-
ferent functions can be considered in order to make this aggrega-
tion [4,12–14]. One of the most commonly used method for
aggregation is known as federated averaging. As its name indicates,
it simply consists of taking the means of the weights (or that of the
models) calculated with each client. Thus, the results obtained
with this mean (p.e. in the case of a neural network, the average
of the weights obtained in each layer is calculated) will be the
newweights of the model, fromwhich the next iteration of the fed-
erated learning process will begin.

In our study we will use the federated weighted averaging as the
aggregation function. In particular, this operator is similar to the
vertical data.
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classic federated averaging operator, but it performs the average
on a pondered way in order to take into account the possible
imbalance according to the number of data of each client.

Then, be N the number of clients, ni the number of data of client
i 8i 2 1; . . . ;Nf g. We define wi as follows:

wi ¼ ni

XN

i¼1

ni

8i 2 1; . . . ;Nf g ð1Þ

Let xi be the weights obtained for the model after training it with
the data of client i 8i 2 1; . . . ;Nf g. The aggregation of the weights
(xaggregated) is calculated as follows:

xaggregated ¼
XN

i¼1

wixi ð2Þ

Thus, once the server has calculated xaggregated, it can update the
model to send it back again to each client and repeat the process
as many times as it deems necessary.

Although in this work we will use the federated weighted aver-
aging operator exposed previously, it is also interesting to study
the application of other aggregation functions. In particular using
machine learning models in order to optimize weight aggregation
is really attractive.

As mentioned previously, additional privacy conditions may be
applied to the weights before aggregation, in order to limit the loss
of information allowed if they are intercepted during the client–
server communication. For example, among other measures, it is
possible to apply Differential Privacy in order to add noise to the
weights. To better understand this case, suppose we have a list
of numeric data, to which we are going to add noise by adding a
random number between �a and a from a uniform distribution,
with a 2 R�

þ. Then, by the Law of Large Numbers it can be observed
that when the number of data to which such noise is added tends
to infinity, the mean of such noise will tend to zero (and therefore
the mean with noise will tend to the mean of the original data).
Specifically, note that the mean of a uniform distribution is given
by l ¼ xþy

2 , and in this case x ¼ �a and y ¼ a, so l ¼ 0. Be Xn the
mean of the n random numbers, by the Strong Law of the Large
Numbers, P limn!1Xn ¼ l

� � ¼ 1. Then, the mean of the weights with
the added noise will tend to the mean of the original weights, as
the mean of the error will tend to l ¼ 0.

As already mentioned, regardless of the possibility of applying
this type of privacy preservation measures, it is important to note
that the weights must be transmitted to the server via encrypted
communication.

3. Related work

Since the introduction of the federated learning term by McMa-
han in 2017 [3] there has been significant work on the topic. Fed-
erated learning is being studied in a wide range of fields [15] such
as medical data [16–20], cybersecurity [21,22] or Internet of Things
[23,24] among others. Due to the increased concerns, restrictions
and requirements related to data privacy there are numerous
papers that expose different FL techniques, definitions and
methodologies [2,12,25,11], as well as some of the problems that
are still open [9], like the application of the technique in training
data are non-i.d.d. on the local clients [10] or the efficient trans-
mission of the model parameters [26].

In addition to scientific literature, there are various software
implementations providing federated learning tools, techniques
and algorithms. The following is a brief presentation of some of
the most prominent Python libraries for FL tasks (among others):
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Tensorflow Federated (TFF) [27] is focused on experimental and
research use of federated learning techniques and data decentral-
ization in general. PySyft [28], created by the OpenMined commu-
nity, seeks to apply deep and machine learning techniques securely
and privately. IBM federated learning [29] is a Python framework for
federated learning applied to a business environment. Flower [30]
is a novel federated learning framework that is agnostic to the
toolkit being used by the client devices. FedML [31] is an open
research library that seeks to facilitate the development of new
federated learning algorithms. In addition to these, there are
numerous Python-based libraries that implement Federated learn-
ing techniques, for example, in [4] different use cases of the frame-
work Sherpa.ai FL are presented together with indications about
the code implemented and theoretical aspects of the field. How-
ever, as will be explained in the following section, in our work
we have decided to implement independently from these libraries
the client and server classes necessary to carry out the classical
federated learning scheme.

Regarding the aggregation functions, as discussed in SubSec-
tion 2.5 the most conventional approach is to use federated averag-
ing (FedAvg), or even its weighted version as will be done in this
study. However, there are other approaches that can be considered,
such as CO-OP [4] or federated matched averaging (FedMA) [12]
among others.

In this paper, part of the case study exposed in Section 4 has
focused on the problem of intermittent clients, therefore, it is of
great interest to review the state of the art regarding the selection
of clients in a FL scheme, as well as possible problems with them.
In [32] a novel client subsampling scheme in proposed in order to
address the problems related with the client–server communica-
tion. In [33], FedCS is proposed as an efficient FL protocol that
actively manages clients according to their resources. Finally, in
[34] a communication-efficient client selection strategy is pro-
posed to deal with communication limitations and intermittent cli-
ent availability.

On the other hand, it is worth mentioning two variants of the
classic federated learning schema, gossip learning and split learn-
ing [35,36]. The case of gossip learning (already mentioned in
SubSection 2.4) is very intuitive once the concept of federated
learning is understood, since it consists of eliminating the depen-
dence on a central server to orchestrate the process. Furthermore,
in the gossip architecture, the different clients (or nodes) randomly
or conditionally select multiple clients to exchange updates
between them at each repetition of the cycle [37]. Finally, in the
simplest split learning configuration, each client trains a neural
network up to a cut-off layer, and the output is sent to the central
server. Five different federated learning architectures are pre-
sented in Fig. 2 of [37], being the Parameter Server (PS) architec-
ture the one which will be implemented in this study.

Finally, as far as the implementation of a FL scheme and use
case examples are concerned, we highlight the following works:
[19], where three benchmark datasets are studied (MNIST, Medical
Information Mart for Intensive Care-III dataset and an ECG data-
set), [38], which shows experiments using MRI scans and include
the use of Differential Privacy (DP) techniques, and [39], which is
a survey on the use of FL in smart healthcare. Compared to the pre-
vious ones, in addition to exhaustively presenting a use case, a
comparison based on the number of clients, in order to analyze
scalability is carried out, along with the exploration of two differ-
ent approaches for the scenario in which there are intermittent cli-
ents (one disappears and a new one enters), and two others for the
case in which a certain client does not send the weights corre-
sponding to the current repetition in time for aggregation, but
sends them later during the course of another repetition of the
FL schema.
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4. Experiment: Chest X-ray image classification

The objective of this study is to present the implementation of a
simple example of a FL scheme from scratch. Specifically, the
experiments have been carried out using the Python 3 program-
ming language [40]. In particular, the following additional libraries
and versions have been used (among others): scikit-learn (0.24.2),
tensorflow (2.6.0), keras (2.6.0), pandas (1.3.4) and numpy (1.21.4).
For more information about this libraries see [41].

Although several Python libraries that implement the federated
learning architecture have been presented in Section 3, in this case,
for the sake of completeness of the study and greater customiza-
tion, as well as better understanding of the architecture, we have
made our own implementation. Then, in order to reproduce the
procedure exposed in Section 2, and in particular in Fig. 2, we have
implemented a class called Client and another one called Server to
follow this scheme.

4.1. Data used

In this work we show a medical image analysis use case. Specif-
ically, we are going to use chest X-ray images, and the objective is
to classify them according to whether or not the patient has pneu-
monia. Specifically, the data were obtained from [42].

The data used (which are published openly) are divided into
three groups: train, test and validation. Let us present in Table 1
the distribution of the images of each type (pneumonia and nor-
mal) in each of these three sets.

To give an idea of the type of images we are working with, in
Fig. 4 three images labeled as pneumonia, and three others labeled
as normal (the patient does not present pneumonia) are shown,
both obtained from the train set.

4.2. Model under study

In order to classify the previously presented images into normal
or pneumonia, a model consisting of a multi-layer convolutional
Table 1
Distribution of the X-ray images in train, test and validation sets.

Pneumonia Normal

Train 3875 1341
Test 390 234
Validation 8 8

Fig. 4. Example of the two categories of images under study (pneumonia and
normal).
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network is proposed (remember that the objective of this example
is to predict from an X-ray image whether the patient has pneumo-
nia or not). Specifically, its structure is based on that of models
studied for the classification of medical images (see [43]). In addi-
tion, different tests have been carried out to adjust the final model
that has been used in this use case, regarding the number of layers
and the number of neurons in them, the compilation method, etc.
The architecture of the final model applied has been implemented
using the Python library keras, and it is shown below:

� Conv2D layer. Filters: 32. Kernel size: (3, 3). Activation: ReLU.
Input shape: (150,150,1).

� BatchNormalization layer.
� MaxPooling2D layer. Pool size: (2,2). Strides: 2.
� Conv2D layer. Filters: 64. Kernel size: (3, 3). Activation: ReLU.
� Dropout layer. Rate: 0.1.
� BatchNormalization layer.
� MaxPooling2D layer. Pool size: (2,2). Strides: 2.
� Conv2D layer. Filters: 64. Kernel size: (3, 3). Activation: ReLU.
� BatchNormalization layer.
� MaxPooling2D layer. Pool size: (2,2). Strides: 2.
� Conv2D layer. Filters: 128. Kernel size: (3, 3). Activation: ReLU.
� Dropout layer. Rate: 0.2.
� BatchNormalization layer.
� MaxPooling2D layer. Pool size: (2,2). Strides: 2.
� Conv2D layer. Filters: 256. Kernel size: (3, 3). Activation: ReLU.
� Dropout layer. Rate: 0.2.
� BatchNormalization layer.
� MaxPooling2D layer. Pool size: (2,2).
� Flatten layer.
� Dense layer. Units: 128. Activation: ReLU.
� Dropout layer. Rate: 0.2.
� Dense layer. Units: 1. Activation: sigmoid.

In addition, the optimizer RMSprop and the binary cross-entropy as
loss function were used to compile the model. The metric used to
quantify the performance of the model was the accuracy (number
of correct predictions out of total predictions).

Finally, as the data have been randomly distributed along the
different clients, there may be cases of imbalance in such data. In
order to compare the centralized and decentralized cases, and in
the latter case the evolution in the initial test set as a function of
the number of FL cycle repetitions, the area under the ROC curve
(AUC) will also be computed, for consistency of such results, using
Python library sklearn.

4.3. Federated learning approach (3 clients)

In the classical use of federated learning, the number of clients
is predefined. However, in our use case we will be interested to see
if this technique can bring advantages over the use of centralized
data (when privacy requirements allow it). Thus, given the train
set of data presented previously, different clients will be simulated
in order to compare these approaches, and thus the application of a
federated learning schema will be exposed as well as the results
obtained by applying it. Note that by the actual way in which the
different clients are created, it is a case of horizontal federated
learning.

Given the initial set of data (the train set), we will first divide it
into 3 clients, with a different number of data for each of them, as
presented in Table 2. In addition, in order to train and test the mod-
els on each client, we split each of these into train (75%) and test
(25%) sets. We also present in this table the average time per
epoch that it takes to train the model in each client. It is important
to highlight that even though for this use case the different clients
have been artificially created (from a centralized dataset), in the



Table 2
Number of data of each client and average training time per epoch. Case: 3 clients.

Number of data

Train Test Average time per epoch (s)

Client 1 1050 350 23.1
Client 2 1800 600 40.1
Client 3 1062 350 24

Table 4
Decentralized approach. Metrics obtained for the test data varying Nr and with
Ne ¼ 1. Case: 3 clients.

Nr Loss (test) Accuracy (test) AUC (test)

1 8.5823 0.6250 0.5105
2 8.2261 0.6250 0.5204
3 11.8544 0.6250 0.5987
4 13.6620 0.6250 0.8799
5 8.9979 0.6266 0.8936
6 12.2626 0.6298 0.9210
7 3.0013 0.7660 0.9271
8 4.3232 0.7308 0.9313
9 6.2835 0.6987 0.9246
10 2.6034 0.8029 0.9185
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case of a real federated learning scheme, the communication of the
weights between the different clients and the server must be
encrypted. This would not be necessary if we simply wanted to
present a distributed machine learning scheme, where the central
server distributes different subsets of data among different
workers.

Be Nc the number of clients, Ne the number of epochs the model
is trained on each client, Nr the number of times the FL schema is
repeated and ti the average time it takes to train each epoch for the
data of client i. Since this training is done in parallel, the execution
time will be:

NrNe max
i2 1;...;Ncf g

ti ð3Þ

Note that training this same model in a centralized way, that is on
the initial data set, being these in total 5216 images, the average
time per epoch (average over 10 epochs executed) is 138.6s. Thus,
if the process is repeated 10 times for the decentralized case
(Nr ¼ 10), the average time considering that one epoch is trained
in each case (Ne ¼ 1), will be 401s (see Table 2), while if we train
the model for the centralized case 10 epochs, the execution time
will be approximately 1386s. We are therefore interested to see if
this substantial saving in execution time will be reflected in an
accuracy penalty for the test set.

Therefore, let’s see in Table 3 the results obtained when training
these two cases for the test set, which consists of 624 images. Note
that in the centralized approach we are training with more data
than with the 3 clients together in the decentralized one. This is
because for the decentralized case we have left a part of the data
as a test for further analysis. Even so, the results for the test accu-
racy obtained are better in the case where we apply federated
learning (i.e. the data is used in a decentralized way). This does
not occur with the AUC, which is slightly worse in the case of FL,
but at the cost of a runtime reduction of more than 70%. In fact,
in addition to improved results in terms of accuracy, a reduction
in execution time of approximately 71.07% is obtained.

The evolution of the test loss, accuracy and AUC values obtained
for this case, training one epoch each time on each client (Ne ¼ 1),
and repeating this process Nr times, is shown in Table 4.

It can be observed that, contrary to what might be intuitively
expected, the best results in terms o loss and accuracy for the set
of tests are obtained after 10 repetitions, while the best value for
the AUC is reached with Nr ¼ 8, being better than the one obtained
after 10 repetitions. This can be due to the fact that in each repeti-
tion the weights of the models are adjusted according to the data of
each client, and the data on which we are predicting have not been
seen by any client. In the same way, the convergence of the model
can be seen when increasing repetitions of the FL cycle, especially
Table 3
Centralized approach vs decentralized approach. Case: 3 clients.

Centralized approach Decentralized approach

Loss Accuracy AUC Loss Accuracy AUC
(test) (test) (test) (test) (test) (test)

3.0694 0.6619 0.9429 2.6034 0.8029 0.9185
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noticeable in the AUC, which goes from 0.5105 to 0.9185 in the last
round, and 0.9313 in the best case.

In the same way, as we will observe in the following table, the
same thing will happen with the test set of each client, since we are
not interested in overfitting the models for a specific client, but
rather that based on the data of each client, they generalize in
the best possible way. In Table 5 the results in terms of loss and
accuracy for each client’s test set evaluating using the model
obtained after Nr repetitions, are presented.

Note that for client 1, the best results in terms of accuracy are
obtained for Nr ¼ 7, for client 2 with Nr ¼ 8 and with Nr ¼ 7 and
Nr ¼ 10 for client 3. In terms of the loss function, the best results
are obtained with Nr ¼ 7. That is, in most cases the best results
for the tests set of each client are reached for Nr ¼ 7. It is again
observed that more repetitions do not necessarily lead to better
results, since these are made by aggregating the different weights
obtained for each client, which will vary with each repetition. In
addition, the convergence of the method can be clearly seen from
the sixth repetition.

On the other hand, if we take Ne ¼ 10 and Nr ¼ 1, although
according to the Eq. 3 the execution time is the same as in the case
where Ne ¼ 1 and Nr ¼ 10, the results are actually worse. Specifi-
cally, in this case we obtain for the test set a loss of 11.8120, and
an accuracy of 0.6250, as opposed to the results obtained for
Ne ¼ 1 and Nr ¼ 10 (see the last row of Table 4). Concretely, taking
Ne ¼ 10 and Nr ¼ 1, we obtain the same accuracy as for the case
Ne ¼ Nr ¼ 1, and a worse value for the loss (see the first row of
Table 4). This tells us that in this specific use case is more appropri-
ate to perform more repetitions of the federated learning scheme
instead of training more epochs on each client. In addition, this
may be because training more epochs on each client leads to over-
fitting on this client, worsening the accuracy for the test set. Intu-
itively this reinforces the idea of using federated learning to
improve results in a decentralized data case.

4.3.1. Data distribution
Let us study the distribution of the two categories present in the

data for each of the three clients (see Table 6). The objective is to
analyze if the two classes are distributed in the same way in the
different clients, or if, on the contrary, a different distribution is
obtained in each one of them.

These data have been selected manually, so that the distribu-
tions of the data in the different clients are different. For example,
in client 2 less than 17% of the samples correspond to images of
patients without pneumonia, while this percentage exceeds 38%
(more than double) in the case of client 3. In addition, if we com-
pare with the global distribution of the data of the three clients,
we can see that between that of the third one and the global distri-
bution, there is more than a 12% difference. The distribution of the
data is one of the most important factors that can affect a federated



Table 5
Metrics obtained for the test set of each client varying Nr with Ne ¼ 1 fixed. Case: 3 clients.

Client 1 (test) Client 2 (test) Client 3 (test)

Nr Loss Accuracy Loss Accuracy Loss Accuracy

1 6.4700 0.7143 3.7583 0.8333 8.6489 0.6186
2 6.0401 0.7143 3.4773 0.8333 8.0885 0.6186
3 8.4223 0.7143 4.8034 0.8333 11.2106 0.6186
4 7.2142 0.7200 4.1675 0.8333 10.2194 0.6186
5 2.9167 0.7513 1.4952 0.8467 4.1782 0.6441
6 3.1232 0.8000 1.5306 0.8750 4.5520 0.7118
7 0.1318 0.9714 0.0357 0.9883 0.2064 0.9548
8 0.2194 0.9657 0.0505 0.9917 0.3503 0.9463
9 0.3861 0.9457 0.1813 0.9817 0.9088 0.8927
10 0.3553 0.9543 0.0921 0.9783 0.2908 0.9548

Table 6
Data distribution for the three clients (without distinguishing train and test sets).

Number of data Normal (%) Pneumonia (%)

Client 1 1400 28.57 71.43
Client 2 2400 16.67 83.33
Client 3 1416 38.21 61.79
ALL 5216 25.71 74.29

Table 8
Centralized approach vs decentralized approach. Case: 10 clients.

Centralized approach Decentralized approach

Loss Accuracy AUC Loss Accuracy AUC
(test) (test) (test) (test) (test) (test)

3.0694 0.6619 0.9429 4.7813 0.7212 0.9095
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learning algorithm, in particular, the fact that they are unbalanced
(as in this case), is a key aspect to be evaluated. However, as we
have seen in the above, despite the unbalanced data, we managed
to obtain a substantial improvement by distributing the data in 3
clients, compared to the case in which they are centralized (pass-
ing the accuracy from 0.6619 in the centralized case to 0.7853 in
the best performance of the federated learning approach). In the
following cases, the process of allocating the data among the differ-
ent clients will be a random process, so that these differences in
the distributions will not be so clear.

4.4. Federated learning approach (10 clients)

Now, let us repeat the previous analysis using a larger number
of data owners. In this case, instead of decomposing the train set
into 3 clients, we will decompose it into 10 of them. Again we will
use the model presented in SubSection 4.2. Table 7 shows the num-
ber of data for each client as well as the average computation time
per epoch is shown.

As we have already explained in the previous case, when train-
ing the model in a centralized way, the average time per epoch (av-
erage over 10 epochs executed) is 138.6s. In this case, with 10
clients, if we repeat the process 10 times the average time consid-
ering that one epoch is trained in each case (Ne ¼ 1), will be 110s
(see Eq. 3), while if we train the model for the centralized case
Table 7
Number of data of each client and average training time per epoch. Case: 10 clients.

Number of data

Train Test Average time per epoch (s)

Client 1 442 148 10.1
Client 2 412 138 9.7
Client 3 258 87 6
Client 4 326 109 7.9
Client 5 378 127 9
Client 6 393 132 9
Client 7 356 119 8
Client 8 468 157 11
Client 9 412 138 9.8
Client 10 462 154 11
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10 epochs, the execution time will be approximately 1386s. Let’s
see in Table 8 the results of training these two cases for the test set.

We can thus verify (although we will study this in more detail
in a later summary of results), that applying federated learning
techniques provides substantial advantages over the centralized
case. The advantages in terms of execution time are evident (since
the different clients will perform their computations in parallel,
and the number of data for each one will always be strictly smaller
than in the centralized case), and as shown in Table 8, there is a
very significant improvement also with respect to the accuracy
(although the values obtained for the other two metrics are slightly
worse). The most significant strength is that it can be observed that
in this case, the execution time of the decentralized case reduce by
92.06% the time of the centralized approach, while the accuracy
has also increased.

In Table 9 we show in detail the test loss, accuracy and AUC val-
ues obtained by varying the number of repetitions of the federated
learning process (i.e. varying Nr , with Ne ¼ 1). Specifically, in this
case, the best results for the three metrics are obtained with the
highest number of repetitions performed, Nr ¼ 10. Looking at the
precision, we can see that it is not until the sixth round that the
value of this metric starts to increase, going from 0.6250 during
the first 5 repetitions, to 0.7340 in the ninth, and decreasing a little
in the tenth to 0.7212. While in the case of 3 clients (see Table 4)
the accuracy did not exceed 0.6250 until the 5th repetition (when
reached 0.6266), in this case it occurs from the 7th repetition
Table 9
Decentralized approach. Metrics obtained for the test data varying Nr with Ne ¼ 1
fixed. Case: 10 clients.

Nr Loss (test) Accuracy (test) AUC (test)

1 14.3417 0.6250 0.4237
2 8.6290 0.6250 0.4328
3 6.7486 0.6250 0.4609
4 16.5803 0.6250 0.5406
5 12.1097 0.6250 0.6825
6 9.6882 0.6250 0.7758
7 5.7260 0.6635 0.8763
8 5.5559 0.6907 0.9055
9 3.8730 0.7340 0.9130
10 4.7813 0.7212 0.9095



Table 11
Results obtained by eliminating one client and adding a new one with the two
approaches described above. Case: 3 clients.

Approach 1 (test) Approach 2 (test)

Client removed Loss Accuracy Loss Accuracy

Client 1 2.4668 0.8092 2.8923 0.7949
Client 2 4.4945 0.7452 3.4701 0.7821
Client 3 2.1746 0.8237 3.5976 0.7340
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onwards (with an accuracy of 0.6635 en this round). This shows
that in this second case the convergence is slower, probably
because each client has a smaller number of data than in the first
case. In this case it is very interesting to note that in terms of the
three metrics under study, loss, accuracy and AUC, the best results
are obtained for round 9 instead of round 10, which would imply
even less execution time, and therefore a temporal reduction of
approximately 92.85% compared to the centralized case.

Let us now see in Table 10 for which values of Nr (remember
that Ne ¼ 1) the optimal results (in terms of loss and accuracy)
are obtained for each client’s test set, and what these values are.
Note that the optimum of each metric is not always obtained for
the same value of Nr , as is the case of clients 3, 7 and 10.

In Table 10 it can be seen that both in terms of loss and accuracy
really successful results are obtained for the test set of each client,
with the worst result being Client 7, and the best being Clients 2
and 9 (both with an accuracy of 100%, and Client 2 with a loss
value slightly lower than Client 9).

Again, as in the case of 3 clients, when taking Ne ¼ 10 and
Nr ¼ 1 the estimated execution time is the same as in the case
where Ne ¼ 1 and Nr ¼ 10 (see Eq. 3), but the results are actually
worse. Specifically, in this case we obtain for the test set a loss of
6.5796, and an accuracy of 0.6250, while this values are 4.7813
and 0.7212 respectively for the case of Ne ¼ 1 and Nr ¼ 10 (see
the last row of Table 9).

4.5. Intermittent clients

In the following, two problems that may arise related to client
intermittency will be discussed. As mentioned previously, the
problem of intermittent clients can be due to a wide range of rea-
sons. The most common ones can be communication limitations,
connectivity problems or issues related to computing infrastruc-
tures. However, in this case concerning the health field, if we
assume that this study could involve the collaboration of different
hospitals or health or research centers, all of them with X-ray
images from different patients, the intermittency could be due to
a new center deciding to participate in the training, or others
deciding to drop out for other reasons, such us privacy concerns.
Therefore, it is important to analyze the problems that may arise
or how they could be addressed.

Suppose now that a new client enters the architecture, and one
of the clients which was participating in the training, leaves it. This
fits with a real case where a data owner decides to leave the train-
ing, either voluntarily or involuntarily (e.g. problems with internet
connectivity, technical issues, or even privacy concerns). In the
case of medical imaging, this can be very common if it is a study
in which different hospitals participate, and some leave the train-
ing (for any of the reasons stated previously, among others), and
others join it once it is started. To exemplify this, first let us come
back to the case of a federated learning schema composed by 3 cli-
Table 10
Decentralized approach. Optimal values for each client’s test set. Case: 10 clients.

Loss Accuracy Nr

(client test set) (client test set)

Client 1 0.2779 0.9662 9
Client 2 0.0001 1.0000 9
Client 3 0.1060 0.9655 10
Client 4 0.0330 0.9908 9
Client 5 0.0192 0.9843 9
Client 6 0.0940 0.9772 10
Client 7 0.3918 0.9412 9

0.4982 0.9664 10
Client 8 0.2372 0.9618 9
Client 9 0.0029 1.0000 10
Client 10 0.2432 0.9740 9
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ents. Let us suppose that a client leaves (we will study what hap-
pens when client 1, 2 and 3 leave), and a new client enters,
client 4, which will build using the validation data.

Note that the new client that we are going to add (client 4), only
consists of 16 images, compared to the 1400, 1416 and 2400 of
those used previously. Thus, we seek to test the influence of the
balancing of the datasets used. We consider two different options:

� Approach 1:When a client leaves, the weights obtained for that
client in previous repetitions are not taken into account for sub-
sequent repetitions of the training. The weights obtained for the
new client are included in the aggregation.

� Approach 2: When a client leaves, its last weights calculated
are kept and are used in subsequent aggregations to update
the model. Again, the weights obtained for the new client are
included in the aggregation.

The results obtained for the prediction on the test set with each
approach by adding client 4 and removing each of the previous cli-
ents are presented in Table 11.

In this case we cannot select one approach as better than the
other, since by eliminating the first client, the first approach is bet-
ter in terms of accuracy and loss than the second approach. The
same applies to the third client, the second approach is better than
the first one. However, the opposite happens when eliminating the
second client (the one that contained a larger number of data), in
this case approach 2 produces better results than approach 1, both
in terms of loss and accuracy.

Following this same line, the results of removing a client and
adding a new one in the case of the federated learning schema with
10 clients are shown. Again in this case the client that we add, cli-
ent 11, will have as data the images of the validation set (16
images). We consider the same two approaches as in the case of
three clients In Table 12 the results obtained for the test set when
removing each one of the initial ten clients and adding client 11 are
shown.

In this case, it is clear that in the majority of cases (9 out of 10
for the loss, and 10 out of 10 for the accuracy), the best results are
achieved with the first approach (something that did not seem to
Table 12
Results obtained by eliminating one client and adding a new one with the two
approaches described above. Case: 10 clients.

Approach 1 (test) Approach 2 (test)

Client removed Loss Accuracy Loss Accuracy

Client 1 4.0000 0.7500 4.5387 0.7131
Client 2 3.6074 0.7564 4.8299 0.7083
Client 3 3.7131 0.7548 4.3448 0.7228
Client 4 3.7189 0.7548 4.3951 0.7196
Client 5 3.7096 0.7548 4.2605 0.7228
Client 6 3.7111 0.7548 3.6957 0.7340
Client 7 3.9376 0.7436 4.8988 0.7051
Client 8 3.4686 0.7580 4.3015 0.7147
Client 9 3.3949 0.7596 3.7850 0.7260
Client 10 3.6860 0.7548 8.1755 0.6266



Table 14
Results obtained for the test set considering the last repetition of the FL schema and
approaches A and B. Client i is the intermittent client considered in this example.
Case: 10 clients.

Approach A (test) Approach B (test)

Client i Loss Accuracy Loss Accuracy

Client 1 5.6262 0.6250 6.7738 0.6250
Client 2 4.1949 0.6250 4.3756 0.6250
Client 3 4.9695 0.6250 8.2096 0.6250
Client 4 5.1496 0.6250 4.8699 0.6250
Client 5 4.5158 0.6250 6.4545 0.6250
Client 6 4.3505 0.6250 4.3655 0.6250
Client 7 4.4714 0.6250 6.3264 0.6250
Client 8 3.4311 0.6250 6.0426 0.6250
Client 9 5.1880 0.6250 4.9086 0.6250
Client 10 5.4487 0.6250 4.8596 0.6250

Table 15
Comparison of the centralized approach with the two decentralized cases under
study. Best performance in terms of loss, accuracy and AUC.
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be clear when we study the case of 3 clients). That is, without using
in further rounds of the FL schema the weights obtained in previ-
ous repetitions if one client leaves the training process.

It should be noted that the selection of one criterion or another
will depend on the type of data of each client, but in principle, it
seems more convenient not to keep the last weights calculated
for the eliminated client, rather than not taking them into account
(for example, the frequency with which data is updated for each
client is key in considering whether or not to discard such
weights).

Finally, let us suppose now that one of the clients involved in
the process does not send the updates after a pre-established time.
As the rest cannot wait indefinitely, a decision must be taken in
advance: consider the previous update available or not count on
this client. In the same way, once this client sends its update after
a certain number of repetitions of the FL schema, it will have to be
decided whether it will be included or whether it should not be
included until it sends the weights corresponding to the current
round. Then, the following two approaches can be studied:

� Approach A: Until new weights are received from the client, the
last update received by the client is used. Once a new one is
received, it is included regardless of the repetition of the
process.

� Approach B: If a client does not send its updates on time in a
certain round, the parameters are not included again, nor are
those calculated in other repetitions used. The weights of that
client will only be included again when the client re-trains
the initialized model with the weights of the corresponding
repetition.

Let us illustrate this problem with the following example: suppose
that once the model is applied for the fifth time to each client, client
i (for certain i 2 1; . . . ;Ncf g) does not send its weights after the pre-
established maximum waiting time prior to aggregation. Also, sup-
pose that this client sends the updates at the end of repetition 10.
The results obtained with the two approaches exposed for this
example are shown for each client in Table 13 for the case of three
clients and in Table 14 for the case of 10 clients.

In this case, we find that approach B achieves better results than
approach one in all three cases in terms of accuracy, and in 2 of the
3 cases in terms of loss. This is not really significant enough to
decide in favor of one approach or the other, so in Table 14 the
results for the 10-clients case are studied.

In this case, comparing approaches A and B for 10 clients, we
can see that the models fail to converge in terms of accuracy by
the end of the FL scheme rounds. This is not entirely surprising,
since we have already seen that in this case it took 7 repetitions
for the model to start converging by increasing the accuracy to
0.6250, and in this case, the model undergoes the change in the
configuration of the clients in round 5. However, it is possible to
compare these two approaches in terms of loss. Thus, in this exam-
ple we can see that in 7 out of 10 cases, better results are obtained
with approach A than with approach B, i.e. if a client does not send
its updates in the corresponding repetition, the previous ones will
be used until new weights are received. This is the opposite of
Table 13
Results obtained for the test set considering the last repetition of the FL schema and
approaches A and B. Client i is the intermittent client considered in this example.
Case: 3 clients.

Approach A (test) Approach B (test)

Client i Loss Accuracy Loss Accuracy

Client 1 12.2229 0.6250 8.6411 0.6522
Client 2 6.9331 0.6298 3.5930 0.7516
Client 3 2.0380 0.7436 3.0532 0.7997
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what happened in the case of 3 clients. However, what can be
clearly observed here is that once the FL scheme undergoes a
change, namely some weights are not received in time and/or sent
with delay, more rounds will be needed to converge. Again, as
already mentioned, it is important to study which approach is suit-
able depending on the data used, the characteristics of the clients
(and the number of data each one owns) and the objective of the
problem.

4.6. Summary and comparison

In this section we will summarize the different results obtained
in the analysis of the previous case study.

First, in Table 15 the best performance obtained in each case
under study in terms of loss, accuracy and AUC (depending the
round of the FL schema Nr) and time reduction vs the centralized
approach is shown.

In the case of 10 clients it is clearly observed that the results for
the three metrics are better in the case where 9 repetitions of the
FL schema are performed instead of 10, which also leads to a
shorter computation time. With respect to the case of 3 clients, it
is observed that in terms of loss and accuracy, the best results
are obtained in the tenth repetition, but this is not true for the
AUC, which reaches its best value in the eighth repetition, again
implying less computation time.

In addition, let’s study it in more detail the AUC and the ROC
curves obtained for the centralized approach and for the round
which provides the best results in terms of AUC for the cases of
three and ten clients, analyzing the one obtained for each round
Nr 2 1; . . . ;10f g, and for Nr ¼ 10 (see Fig. 5). As already mentioned,
it can be seen that the best results in terms of this metric are not
obtained for the maximum number of rounds performed
(Nr ¼ 10), but for 8 and 9 rounds respectively for the cases of 3
and 10 clients.

Looking again at the cases of three and ten clients, it is of par-
ticular interest to assess that this federated learning approach also
Test
Loss

Test
Acc.

Test
AUC

Nr Exc.
time
(s)

Time reduction
vs cent. apr. (%)

Centralized
approach

3.0694 0.6619 0.9429 — 1386 —

Decentralized
approach

3 clients 2.6034 0.8029 0.9185 10 401 71.07
4.3232 0.7308 0.9313 8 320.8 76.85

10 clients 4.7813 0.7212 0.9095 10 110 92.06
3.8730 0.7340 0.9130 9 99 92.85



Fig. 5. ROC curves for each of the cases exposed in Table 15.

Table 18
Results obtained by eliminating one client and adding a new one with the two
approaches described above. Average loss and accuracy.

Approach A (test) Approach B (test)

Average Average Average Average
loss accuracy loss accuracy

3 clients 7.0646 0.6661 5.0948 0.7345
10 clients 4.7345 0.6250 5.7186 0.6250
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gives good results in the test sets of each client. For this purpose in
Table 16 the average loss and accuracy obtained in each case is
compared, considering the optimum value reached for each client
(see Table 5 and 10).

In this case, in contrast to the previous one, it can be seen that
the mean loss for the test sets of each client is lower when there
are three clients than when there are ten (however, in the case
of accuracy, the results are slightly better in the case of ten clients).

In view of the above summary of results, it can be noted that in
each case it must be studied whether a smaller or larger number of
clients should be taken, depending on the characteristics of the
data and the problem.

Now let us turn to the case study of the problem of intermittent
clients. First, let us look at the average for loss and accuracy in the
cases where a client is eliminated and a new one appears
(Table 17). Note that in both approaches the new client is the same
(the one containing the images of the validation set). For this cal-
culation the results of Tables 11 and 12 are used. In this case, the
test set considered is the initial one (see Table 1), not that of each
client.

In the previous table we can see that, when there are intermit-
tent clients, the results are better with 3 clients than with 10, both
in terms of loss and accuracy, and it is also observed that in both
cases, in this example is more interesting to apply the first
approach, which is not to keep the last weights calculated for the
eliminated client.
Table 16
Comparison of the average loss and accuracy obtained for the test sets of the clients of
each decentralized case.

Average loss Average test accuracy
(client test set) (client test set)

3 clients 0.1246 0.9726
10 clients 0.1405 0.9786

Table 17
Results obtained by eliminating one client and adding a new one with the two
approaches described above. Average loss and accuracy.

Approach 1 (test) Approach 2 (test)

Average Average Average Average
loss accuracy loss accuracy

3 clients 3.0453 0.7927 3.3200 0.7703
10 clients 3.6947 0.7552 4.7223 0.7093
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Finally, regarding the second problem presented previously
related with intermittent clients, the case where a client does not
send its weights in time at the end of a repetition of the FL scheme
but sends them in another round, we propose two possible
approaches (A and B) to be followed. In particular we have studied
this issue applying the two approaches to an example with the
cases of 3 and 10 clients. In this example it is assumed that at
the end of the 5th repetition, prior to aggregation, a client i does
not send its updates, but these are received by the server at the
end of the 10th repetition, also prior to aggregation. It can be seen
that approach A achieves better results in terms of loss and accu-
racy for the case of 3 clients, while for the case of 10 clients,
although the best results are obtained in terms of loss with
approach B, in terms of accuracy it remains at 0.6250 with both
approaches (the model does not converge). We can also observe
that although with 10 clients the model does not overcome the
accuracy 0.6250, with approach A there is a great reduction of
the loss with respect to the case of 3 clients, i.e., although the
model does not converge in terms of accuracy in the case of 10 cli-
ents, it does so faster than with 3 clients in terms of loss.

Table 18 shows the mean obtained for the test loss and accuracy
after analyzing this case considering each of the possible clients as
an intermittent client, which verifies the superiority of approach A
over approach B in this example for the case of 3 clients, and the
opposite for the case of 10 clients (see Tables 13 and 14). This fur-
ther supports, as mentioned previously, that the most appropriate
procedure should be carefully studied in each case under study, as
this same example shows how one approach is more convenient
than another depending on the split of the data in a greater or
lower number of clients.
5. Conclusions and future work

In this paper we have presented the implementation of a com-
plete federated learning algorithm and its application to a practical
use case on medical image classification, with special attention to
the evolution of results as the number of clients in which the orig-
inal data are divided increases. Although the classical use of this
type of techniques is motivated by the impossibility of working
in a centralized way with data from different clients that intend
to study the same subject using data of the same characteristics
(because they cannot or do not want to share their data with each
other or with an external server due to privacy restrictions), we
will also study the advantages that this approach can bring over
the classical (centralized) one by simulating different clients in a
specific use case.

Specifically, for the analyzed use case, the different clients have
been artificially generated from the training data of a public data-
set of medical images of chest X-ray. Specifically, the objective is to
classify the images according to whether or not the patient has
pneumonia. In particular, the different results obtained by dividing
the initial train set into 3 and 10 clients have been studied. Further
to the study of the results for the test data set, for the cases of three
and ten clients, individual results have been analyzed for each cli-
ent test set. It is worth noting that in both cases of this use case, for



1 https://www.hashicorp.com/
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the same runtime, much better results are obtained by considering
Ne ¼ 1 and Nr ¼ 10 instead of Ne ¼ 10 and Nr ¼ 1. This implies that
in this particular example it is more convenient to apply more
rounds of the FL scheme than training epochs of the model.

We can thus see that this technique not only gives us the advan-
tages of greater data security (since data does not travel between
clients or between client and server), but also, when applied to
an scenario in which the centralized approach could be used, fed-
erated learning also shows improvements in terms of reduction of
computing time and even in accuracy increasing with respect to
the classic approach.

In addition, an analysis has been made of the possible steps to
follow in the case of the problem of intermittent clients. In partic-
ular, we have started by analyzing two approaches in the case of a
client leaving the training and a new one entering, distinguishing
in the case of the one who leaves the training the results that
would be obtained if the weights sent in previous iterations are
no longer considered, compared to if they continue to be used in
the aggregation. Moreover, we have also discussed a problem that
can be very common, among other factors, due to connectivity.
This is the case when a client does not send its updates to the ser-
ver after a predefined time has elapsed but sends it after certain
rounds. In the situation that this happens, we must consider
whether to continue using the old updates, and include the new
one when it is received, or not to include the weights of this client
until they are those corresponding to the current repetition of the
FL schema. Specifically, in this case for the specific example under
study we have been able to conclude that the second approach is
more convenient, as shown in Table 18.

As for next steps, we foresee many lines of work and research as
a continuation of this work, such as the following:

� Study of different models, in particular the application to other
kind of machine learning models, not only to neural or convolu-
tional networks.

� Continue with the exhaustive study of results and possible
responses in the case of intermittent clients: that more than
one appears and disappears, and that this occurs in several rep-
etitions of the process.

� Selection, implementation and use of other aggregation func-
tions according to the case of study. For example, using cluster
federated averaging operator, with is based on using the algo-
rithm of k-means and use the centroids in order to obtain the
new weights (exposed in the documentation about the aggrega-
tion operators of [44]). Moreover, as mentioned when present-
ing the aggregation function used in this use case, it is really
attractive to try to consider machine learning models to opti-
mize the aggregation.

� Analysis of more use cases, in particular with special attention
to the non-i.i.d. data case [37]. Note that when the training data
of a model with a federated learning architecture is unbalanced
in its distribution, as proved in [45], the accuracy may be
reduced (see [37]).

� Analysis of the possible attacks that the process may suffer and
study of different ways to avoid them or reduce their effects.
Some of these are: corruption of models by attackers (i.e. some
clients could be attackers modifying the model with corrupted
data), attacks on the communication of weights and the extrac-
tion of data characteristics from them, etc. One possibility is to
implement the algorithm applying Homomorphic Encryption
(HE) in the communication of the weights between the clients
and the server.

� Implementation of a use case comparing different data decen-
tralization architectures, such as the four proposed together
with the Parameter Server one in Fig. 2 of [37]: all reduce, ring
all reduce, gossip and neighbor architecture.
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� Introduce federated transfer learning techniques in order to
improve the results obtained with the classical approach (see
[46] where federated transfer learning is applied for machine
fault diagnosis, and [47]).

� Introduce other techniques and architectures for data decen-
tralization such us split and gossip learning (see [35,36]).

� Finally, note that as this was a preliminary study based on sim-
ulated clients, it was not necessary to create the client–server
communication structure. However, for a real application use
case, it is important to emphasize here that such communica-
tion must be encrypted. In addition, among other possible tools,
we propose the use of Serf or Consul from HarshiCorp1 for the
orchestration of such communication.
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